Python tensorflow.python.ops.init_ops.truncated_normal_initializer() Examples

The following are 30 code examples of tensorflow.python.ops.init_ops.truncated_normal_initializer(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.ops.init_ops , or try the search function .
Example #1
Source File: feature_column.py    From keras-lambda with MIT License 6 votes vote down vote up
def __new__(cls,
              column_name,
              size,
              dimension,
              hash_key,
              combiner="sqrtn",
              initializer=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "column_name: {}".format(column_name))
    if initializer is None:
      stddev = 0.1
      # TODO(b/25671353): Better initial value?
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_ScatteredEmbeddingColumn, cls).__new__(cls, column_name, size,
                                                         dimension, hash_key,
                                                         combiner,
                                                         initializer) 
Example #2
Source File: loss_ops_test.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def testGradientWithZeroWeight(self):
    with ops.Graph().as_default():
      random_seed.set_random_seed(0)

      inputs = array_ops.ones((2, 3))
      weights = variable_scope.get_variable(
          'weights',
          shape=[3, 4],
          initializer=init_ops.truncated_normal_initializer())
      predictions = math_ops.matmul(inputs, weights)

      optimizer = momentum_lib.MomentumOptimizer(
          learning_rate=0.001, momentum=0.9)
      loss = loss_ops.mean_pairwise_squared_error(predictions, predictions, 0)

      gradients_to_variables = optimizer.compute_gradients(loss)

      init_op = variables.global_variables_initializer()

      with self.cached_session() as sess:
        sess.run(init_op)
        for grad, _ in gradients_to_variables:
          np_grad = sess.run(grad)
          self.assertFalse(np.isnan(np_grad).any()) 
Example #3
Source File: variables_test.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def testNoScopes(self):
    init_value0 = np.asarray([1.0, 3.0, 9.0]).reshape((1, 3, 1))
    init_value1 = np.asarray([2.0, 4.0, 6.0, 8.0]).reshape((2, 1, 2))

    with self.cached_session() as sess:
      initializer = init_ops.truncated_normal_initializer(stddev=.1)
      var0 = variables_lib2.variable(
          'my_var0', shape=[1, 3, 1], initializer=initializer)
      var1 = variables_lib2.variable(
          'my_var1', shape=[2, 1, 2], initializer=initializer)

      var_names_to_values = {'my_var0': init_value0, 'my_var1': init_value1}
      init_fn = variables_lib2.assign_from_values_fn(var_names_to_values)

      # Initialize the variables.
      sess.run(variables_lib.global_variables_initializer())

      # Perform the assignment.
      init_fn(sess)

      # Request and test the variable values:
      var0, var1 = sess.run([var0, var1])
      self.assertAllEqual(init_value0, var0)
      self.assertAllEqual(init_value1, var1) 
Example #4
Source File: feature_column.py    From lambda-packs with MIT License 6 votes vote down vote up
def __new__(cls,
              column_name,
              size,
              dimension,
              hash_key,
              combiner="sqrtn",
              initializer=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "column_name: {}".format(column_name))
    if initializer is None:
      logging.warn("The default stddev value of initializer will change from "
                   "\"0.1\" to \"1/sqrt(dimension)\" after 2017/02/25.")
      stddev = 0.1
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_ScatteredEmbeddingColumn, cls).__new__(cls, column_name, size,
                                                         dimension, hash_key,
                                                         combiner,
                                                         initializer) 
Example #5
Source File: variables_test.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def testNoScopes(self):
    init_value0 = np.asarray([1.0, 3.0, 9.0]).reshape((1, 3, 1))
    init_value1 = np.asarray([2.0, 4.0, 6.0, 8.0]).reshape((2, 1, 2))

    with self.cached_session() as sess:
      initializer = init_ops.truncated_normal_initializer(stddev=.1)
      var0 = variables_lib2.variable(
          'my_var0', shape=[1, 3, 1], initializer=initializer)
      var1 = variables_lib2.variable(
          'my_var1', shape=[2, 1, 2], initializer=initializer)

      var_names_to_values = {'my_var0': init_value0, 'my_var1': init_value1}
      assign_op, feed_dict = variables_lib2.assign_from_values(
          var_names_to_values)

      # Initialize the variables.
      sess.run(variables_lib.global_variables_initializer())

      # Perform the assignment.
      sess.run(assign_op, feed_dict)

      # Request and test the variable values:
      var0, var1 = sess.run([var0, var1])
      self.assertAllEqual(init_value0, var0)
      self.assertAllEqual(init_value1, var1) 
Example #6
Source File: feature_column.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def __new__(cls,
              column_name,
              size,
              dimension,
              hash_key,
              combiner="sqrtn",
              initializer=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "column_name: {}".format(column_name))
    if initializer is None:
      stddev = 0.1
      # TODO(b/25671353): Better initial value?
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_ScatteredEmbeddingColumn, cls).__new__(cls, column_name, size,
                                                         dimension, hash_key,
                                                         combiner,
                                                         initializer) 
Example #7
Source File: feature_column.py    From deep_image_model with Apache License 2.0 6 votes vote down vote up
def __new__(cls,
              column_name,
              size,
              dimension,
              combiner="sqrtn",
              initializer=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "column_name: {}".format(column_name))
    if initializer is None:
      stddev = 0.1
      # TODO(b/25671353): Better initial value?
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_HashedEmbeddingColumn, cls).__new__(cls, column_name, size,
                                                      dimension, combiner,
                                                      initializer) 
Example #8
Source File: decisions_to_data.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features_per_node],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #9
Source File: decisions_to_data.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='hard_tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=variable_scope.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='hard_tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=variable_scope.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #10
Source File: decisions_to_data.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='stochastic_hard_tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='stochastic_hard_tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #11
Source File: decisions_to_data.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='stochastic_soft_tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='stochastic_soft_tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #12
Source File: feature_column.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def embedding_column(sparse_id_column,
                     dimension,
                     combiner=None,
                     initializer=None,
                     ckpt_to_load_from=None,
                     tensor_name_in_ckpt=None):
  """Creates an `_EmbeddingColumn`.

  Args:
    sparse_id_column: A `_SparseColumn` which is created by for example
      `sparse_column_with_*` or crossed_column functions. Note that `combiner`
      defined in `sparse_id_column` is ignored.
    dimension: An integer specifying dimension of the embedding.
    combiner: A string specifying how to reduce if there are multiple entries
      in a single row. Currently "mean", "sqrtn" and "sum" are supported. Each
      of this can be considered an example level normalization on the column:
        * "sum": do not normalize
        * "mean": do l1 normalization
        * "sqrtn": do l2 normalization
      For more information: `tf.embedding_lookup_sparse`.
    initializer: A variable initializer function to be used in embedding
      variable initialization. If not specified, defaults to
      `tf.truncated_normal_initializer` with mean 0.0 and standard deviation
      1/sqrt(sparse_id_column.length).
    ckpt_to_load_from: (Optional). String representing checkpoint name/pattern
      to restore the column weights. Required if `tensor_name_in_ckpt` is not
      None.
    tensor_name_in_ckpt: (Optional). Name of the `Tensor` in the provided
      checkpoint from which to restore the column weights. Required if
      `ckpt_to_load_from` is not None.

  Returns:
    An `_EmbeddingColumn`.
  """
  if combiner is None:
    logging.warn("The default value of combiner will change from \"mean\" "
                 "to \"sqrtn\" after 2016/11/01.")
    combiner = "mean"
  return _EmbeddingColumn(sparse_id_column, dimension, combiner, initializer,
                          ckpt_to_load_from, tensor_name_in_ckpt) 
Example #13
Source File: rnn_ops.py    From video_prediction with MIT License 5 votes vote down vote up
def _conv2d(self, inputs):
        output_filters = 4 * self._filters
        input_shape = inputs.get_shape().as_list()
        kernel_shape = list(self._kernel_size) + [input_shape[-1], output_filters]
        kernel = vs.get_variable("kernel", kernel_shape, dtype=dtypes.float32,
                                 initializer=init_ops.truncated_normal_initializer(stddev=0.02))
        outputs = nn_ops.conv2d(inputs, kernel, [1] * 4, padding='SAME')
        if not self._normalizer_fn:
            bias = vs.get_variable('bias', [output_filters], dtype=dtypes.float32,
                                   initializer=init_ops.zeros_initializer())
            outputs = nn_ops.bias_add(outputs, bias)
        return outputs 
Example #14
Source File: rnn_ops.py    From video_prediction with MIT License 5 votes vote down vote up
def _dense(self, inputs):
        num_units = 4 * self._filters
        input_shape = inputs.shape.as_list()
        kernel_shape = [input_shape[-1], num_units]
        kernel = vs.get_variable("weights", kernel_shape, dtype=dtypes.float32,
                                 initializer=init_ops.truncated_normal_initializer(stddev=0.02))
        outputs = tf.matmul(inputs, kernel)
        return outputs 
Example #15
Source File: rnn_ops.py    From video_prediction with MIT License 5 votes vote down vote up
def _conv2d(self, inputs, output_filters, bias_initializer):
        input_shape = inputs.get_shape().as_list()
        kernel_shape = list(self._kernel_size) + [input_shape[-1], output_filters]
        kernel = vs.get_variable("kernel", kernel_shape, dtype=dtypes.float32,
                                 initializer=init_ops.truncated_normal_initializer(stddev=0.02))
        outputs = nn_ops.conv2d(inputs, kernel, [1] * 4, padding='SAME')
        if not self._normalizer_fn:
            bias = vs.get_variable('bias', [output_filters], dtype=dtypes.float32,
                                   initializer=bias_initializer)
            outputs = nn_ops.bias_add(outputs, bias)
        return outputs 
Example #16
Source File: rnn_ops.py    From video_prediction with MIT License 5 votes vote down vote up
def _dense(self, inputs, num_units):
        input_shape = inputs.shape.as_list()
        kernel_shape = [input_shape[-1], num_units]
        kernel = vs.get_variable("weights", kernel_shape, dtype=dtypes.float32,
                                 initializer=init_ops.truncated_normal_initializer(stddev=0.02))
        outputs = tf.matmul(inputs, kernel)
        return outputs 
Example #17
Source File: ConvLSTMCell.py    From ConvLSTMCell-tensorflow with MIT License 5 votes vote down vote up
def _conv(args, output_size, filter_size, stddev=0.001, bias=True, bias_start=0.0, scope=None):
  if args is None or (nest.is_sequence(args) and not args):
    raise ValueError("`args` must be specified")
  if not nest.is_sequence(args):
    args = [args]

  # Calculate the total size of arguments on dimension 3.
  # (batch_size x height x width x arg_size)
  total_arg_size = 0
  shapes = [a.get_shape().as_list() for a in args]
  height = shapes[0][1]
  width  = shapes[0][2]
  for shape in shapes:
    if len(shape) != 4:
      raise ValueError("Conv is expecting 3D arguments: %s" % str(shapes))
    if not shape[3]:
      raise ValueError("Conv expects shape[3] of arguments: %s" % str(shapes))
    if shape[1] == height and shape[2] == width:
      total_arg_size += shape[3]
    else :
      raise ValueError("Inconsistent height and width size in arguments: %s" % str(shapes))
  
  with vs.variable_scope(scope or "Conv"):
    kernel = vs.get_variable("Kernel", 
      [filter_size[0], filter_size[1], total_arg_size, output_size],
      initializer=init_ops.truncated_normal_initializer(stddev=stddev))
    
    if len(args) == 1:
      res = tf.nn.conv2d(args[0], kernel, [1, 1, 1, 1], padding='SAME')
    else:
      res = tf.nn.conv2d(array_ops.concat(3, args), kernel, [1, 1, 1, 1], padding='SAME')

    if not bias: return res
    bias_term = vs.get_variable( "Bias", [output_size],
      initializer=init_ops.constant_initializer(bias_start))
  return res + bias_term 
Example #18
Source File: decisions_to_data.py    From keras-lambda with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #19
Source File: decisions_to_data.py    From keras-lambda with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features_per_node],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #20
Source File: decisions_to_data.py    From keras-lambda with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='hard_tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=variable_scope.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='hard_tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=variable_scope.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #21
Source File: decisions_to_data.py    From keras-lambda with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='stochastic_hard_tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='stochastic_hard_tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #22
Source File: feature_column.py    From keras-lambda with MIT License 5 votes vote down vote up
def __new__(cls,
              sparse_id_column,
              dimension,
              combiner="sqrtn",
              initializer=None,
              ckpt_to_load_from=None,
              tensor_name_in_ckpt=None,
              shared_embedding_name=None,
              shared_vocab_size=None,
              max_norm=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "Embedding of column_name: {}".format(
                           sparse_id_column.name))

    if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None):
      raise ValueError("Must specify both `ckpt_to_load_from` and "
                       "`tensor_name_in_ckpt` or none of them.")
    if initializer is None:
      stddev = 1 / math.sqrt(sparse_id_column.length)
      # TODO(b/25671353): Better initial value?
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_EmbeddingColumn, cls).__new__(cls, sparse_id_column,
                                                dimension, combiner,
                                                initializer, ckpt_to_load_from,
                                                tensor_name_in_ckpt,
                                                shared_embedding_name,
                                                shared_vocab_size,
                                                max_norm) 
Example #23
Source File: decisions_to_data.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='hard_tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=variable_scope.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='hard_tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=variable_scope.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #24
Source File: decisions_to_data.py    From lambda-packs with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #25
Source File: decisions_to_data.py    From lambda-packs with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features_per_node],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #26
Source File: decisions_to_data.py    From lambda-packs with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner):

      self.tree_parameters = variable_scope.get_variable(
          name='hard_tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=variable_scope.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='hard_tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=variable_scope.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #27
Source File: decisions_to_data.py    From lambda-packs with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner):

      self.tree_parameters = variable_scope.get_variable(
          name='stochastic_hard_tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='stochastic_hard_tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #28
Source File: feature_column.py    From lambda-packs with MIT License 5 votes vote down vote up
def __new__(cls,
              sparse_id_column,
              dimension,
              combiner="mean",
              initializer=None,
              ckpt_to_load_from=None,
              tensor_name_in_ckpt=None,
              shared_embedding_name=None,
              shared_vocab_size=None,
              max_norm=None,
              trainable=True):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "Embedding of column_name: {}".format(
                           sparse_id_column.name))

    if (ckpt_to_load_from is None) != (tensor_name_in_ckpt is None):
      raise ValueError("Must specify both `ckpt_to_load_from` and "
                       "`tensor_name_in_ckpt` or none of them.")
    if initializer is None:
      logging.warn("The default stddev value of initializer will change from "
                   "\"1/sqrt(vocab_size)\" to \"1/sqrt(dimension)\" after "
                   "2017/02/25.")
      stddev = 1 / math.sqrt(sparse_id_column.length)
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_EmbeddingColumn, cls).__new__(cls, sparse_id_column,
                                                dimension, combiner,
                                                initializer, ckpt_to_load_from,
                                                tensor_name_in_ckpt,
                                                shared_embedding_name,
                                                shared_vocab_size,
                                                max_norm,
                                                trainable) 
Example #29
Source File: decisions_to_data.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std)) 
Example #30
Source File: decisions_to_data.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _define_vars(self, params, **kwargs):
    with ops.device(self.device_assigner.get_device(self.layer_num)):

      self.tree_parameters = variable_scope.get_variable(
          name='tree_parameters_%d' % self.layer_num,
          shape=[params.num_nodes, params.num_features_per_node],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))

      self.tree_thresholds = variable_scope.get_variable(
          name='tree_thresholds_%d' % self.layer_num,
          shape=[params.num_nodes],
          initializer=init_ops.truncated_normal_initializer(
              mean=params.weight_init_mean, stddev=params.weight_init_std))