Python tensorflow.python.ops.init_ops.random_uniform_initializer() Examples

The following are 15 code examples of tensorflow.python.ops.init_ops.random_uniform_initializer(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.ops.init_ops , or try the search function .
Example #1
Source File: core_rnn_cell_impl.py    From auto-alt-text-lambda-api with MIT License 7 votes vote down vote up
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or "embedding_wrapper"):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state) 
Example #2
Source File: core_rnn_cell.py    From lambda-packs with MIT License 6 votes vote down vote up
def call(self, inputs, state):
    """Run the cell on embedded inputs."""
    with ops.device("/cpu:0"):
      if self._initializer:
        initializer = self._initializer
      elif vs.get_variable_scope().initializer:
        initializer = vs.get_variable_scope().initializer
      else:
        # Default initializer for embeddings should have variance=1.
        sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
        initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

      if isinstance(state, tuple):
        data_type = state[0].dtype
      else:
        data_type = state.dtype

      embedding = vs.get_variable(
          "embedding", [self._embedding_classes, self._embedding_size],
          initializer=initializer,
          dtype=data_type)
      embedded = embedding_ops.embedding_lookup(embedding,
                                                array_ops.reshape(inputs, [-1]))

      return self._cell(embedded, state) 
Example #3
Source File: core_rnn_cell.py    From Multiview2Novelview with MIT License 6 votes vote down vote up
def call(self, inputs, state):
    """Run the cell on embedded inputs."""
    with ops.device("/cpu:0"):
      if self._initializer:
        initializer = self._initializer
      elif vs.get_variable_scope().initializer:
        initializer = vs.get_variable_scope().initializer
      else:
        # Default initializer for embeddings should have variance=1.
        sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
        initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

      if isinstance(state, tuple):
        data_type = state[0].dtype
      else:
        data_type = state.dtype

      embedding = vs.get_variable(
          "embedding", [self._embedding_classes, self._embedding_size],
          initializer=initializer,
          dtype=data_type)
      embedded = embedding_ops.embedding_lookup(embedding,
                                                array_ops.reshape(inputs, [-1]))

      return self._cell(embedded, state) 
Example #4
Source File: rnn_cell.py    From ROLO with Apache License 2.0 6 votes vote down vote up
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or type(self).__name__):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state) 
Example #5
Source File: rnn_cell.py    From deep_image_model with Apache License 2.0 6 votes vote down vote up
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or type(self).__name__):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state) 
Example #6
Source File: rnn_cell.py    From ecm with Apache License 2.0 6 votes vote down vote up
def __call__(self, inputs, state, scope=None):
        """Run the cell on embedded inputs."""
        with vs.variable_scope(scope or type(self).__name__):    # "EmbeddingWrapper"
            with ops.device("/cpu:0"):
                if self._initializer:
                    initializer = self._initializer
                elif vs.get_variable_scope().initializer:
                    initializer = vs.get_variable_scope().initializer
                else:
                    # Default initializer for embeddings should have variance=1.
                    sqrt3 = math.sqrt(3)    # Uniform(-sqrt(3), sqrt(3)) has variance=1.
                    initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

                if type(state) is tuple:
                    data_type = state[0].dtype
                else:
                    data_type = state.dtype

                embedding = vs.get_variable(
                        "embedding", [self._embedding_classes, self._embedding_size],
                        initializer=initializer,
                        dtype=data_type)
                embedded = embedding_ops.embedding_lookup(
                        embedding, array_ops.reshape(inputs, [-1]))
        return self._cell(embedded, state) 
Example #7
Source File: mod_core_rnn_cell_impl.py    From RGAN with MIT License 6 votes vote down vote up
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with _checked_scope(self, scope or "embedding_wrapper", reuse=self._reuse):
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state) 
Example #8
Source File: embedding.py    From NJUNMT-tf with Apache License 2.0 6 votes vote down vote up
def _build(self):
        """ build embedding table and
        build position embedding table if timing=="emb"

        :return:
        """
        self._embeddings = variable_scope.get_variable(
            name=(self._name or "embedding_table"),
            shape=[self._vocab_size, self._dimension],
            initializer=init_ops.random_uniform_initializer(
                -self._init_scale, self._init_scale))
        if self._timing == "emb":
            self._position_embedding = variable_scope.get_variable(
                name=(self._name or "embedding_table") + "_posi",
                shape=[self._maximum_position, self._dimension],
                initializer=init_ops.random_uniform_initializer(
                    -self._init_scale, self._init_scale)) 
Example #9
Source File: EUNN.py    From AmusingPythonCodes with MIT License 6 votes vote down vote up
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or "eunn_cell"):

            state = _eunn_loop(state, self._capacity, self.diag_vec, self.off_vec, self.diag, self._fft)

            input_matrix_init = init_ops.random_uniform_initializer(-0.01, 0.01)
            if self._comp:
                input_matrix_re = vs.get_variable("U_re", [inputs.get_shape()[-1], self._hidden_size],
                                                  initializer=input_matrix_init)
                input_matrix_im = vs.get_variable("U_im", [inputs.get_shape()[-1], self._hidden_size],
                                                  initializer=input_matrix_init)
                inputs_re = math_ops.matmul(inputs, input_matrix_re)
                inputs_im = math_ops.matmul(inputs, input_matrix_im)
                inputs = math_ops.complex(inputs_re, inputs_im)
            else:
                input_matrix = vs.get_variable("U", [inputs.get_shape()[-1], self._hidden_size],
                                               initializer=input_matrix_init)
                inputs = math_ops.matmul(inputs, input_matrix)

            bias = vs.get_variable("modReLUBias", [self._hidden_size], initializer=init_ops.constant_initializer())
            output = self._activation((inputs + state), bias, self._comp)

        return output, output 
Example #10
Source File: core_rnn_cell_impl.py    From keras-lambda with MIT License 6 votes vote down vote up
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or "embedding_wrapper"):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state) 
Example #11
Source File: backend.py    From lambda-packs with MIT License 5 votes vote down vote up
def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None):
  """Instantiates a variable with values drawn from a uniform distribution.

  Arguments:
      shape: Tuple of integers, shape of returned Keras variable.
      low: Float, lower boundary of the output interval.
      high: Float, upper boundary of the output interval.
      dtype: String, dtype of returned Keras variable.
      name: String, name of returned Keras variable.
      seed: Integer, random seed.

  Returns:
      A Keras variable, filled with drawn samples.

  Example:
  ```python
      # TensorFlow example
      >>> kvar = K.random_uniform_variable((2,3), 0, 1)
      >>> kvar
      <tensorflow.python.ops.variables.Variable object at 0x10ab40b10>
      >>> K.eval(kvar)
      array([[ 0.10940075,  0.10047495,  0.476143  ],
             [ 0.66137183,  0.00869417,  0.89220798]], dtype=float32)
  ```
  """
  if dtype is None:
    dtype = floatx()
  shape = tuple(map(int, shape))
  tf_dtype = _convert_string_dtype(dtype)
  if seed is None:
    # ensure that randomness is conditioned by the Numpy RNG
    seed = np.random.randint(10e8)
  value = init_ops.random_uniform_initializer(
      low, high, dtype=tf_dtype, seed=seed)(shape)
  return variable(value, dtype=dtype, name=name) 
Example #12
Source File: GORU.py    From rotational-unit-of-memory with MIT License 5 votes vote down vote up
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or "goru_cell"):

            U_init = init_ops.random_uniform_initializer(-0.01, 0.01)
            b_init = init_ops.constant_initializer(2.)
            mod_b_init = init_ops.constant_initializer(2.)

            U = vs.get_variable("U", [inputs.get_shape(
            )[-1], self._hidden_size * 3], dtype=tf.float32, initializer=U_init)
            Ux = math_ops.matmul(inputs, U)
            U_cx, U_rx, U_gx = array_ops.split(Ux, 3, axis=1)

            W_r = vs.get_variable(
                "W_r", [self._hidden_size, self._hidden_size], dtype=tf.float32, initializer=U_init)
            W_g = vs.get_variable(
                "W_g", [self._hidden_size, self._hidden_size], dtype=tf.float32, initializer=U_init)
            W_rh = math_ops.matmul(state, W_r)
            W_gh = math_ops.matmul(state, W_g)

            bias_r = vs.get_variable(
                "bias_r", [self._hidden_size], dtype=tf.float32, initializer=b_init)
            bias_g = vs.get_variable(
                "bias_g", [self._hidden_size], dtype=tf.float32)
            bias_c = vs.get_variable(
                "bias_c", [self._hidden_size], dtype=tf.float32, initializer=mod_b_init)

            r_tmp = U_rx + W_rh + bias_r
            g_tmp = U_gx + W_gh + bias_g
            r = math_ops.sigmoid(r_tmp)

            g = math_ops.sigmoid(g_tmp)

            Unitaryh = _eunn_loop(
                state, self._capacity, self.diag_vec, self.off_vec, self.diag, self._fft)
            c = modrelu(math_ops.multiply(r, Unitaryh) + U_cx, bias_c, False)
            new_state = math_ops.multiply(
                g, state) + math_ops.multiply(1 - g, c)

        return new_state, new_state 
Example #13
Source File: EUNN.py    From rotational-unit-of-memory with MIT License 5 votes vote down vote up
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or "eunn_cell"):

            state = _eunn_loop(state, self._capacity, self.diag_vec,
                               self.off_vec, self.diag, self._fft)

            input_matrix_init = init_ops.random_uniform_initializer(
                -0.01, 0.01)
            if self._comp:
                input_matrix_re = vs.get_variable("U_re", [inputs.get_shape(
                )[-1], self._hidden_size], initializer=input_matrix_init)
                input_matrix_im = vs.get_variable("U_im", [inputs.get_shape(
                )[-1], self._hidden_size], initializer=input_matrix_init)
                inputs_re = math_ops.matmul(inputs, input_matrix_re)
                inputs_im = math_ops.matmul(inputs, input_matrix_im)
                inputs = math_ops.complex(inputs_re, inputs_im)
            else:
                input_matrix = vs.get_variable(
                    "U", [inputs.get_shape()[-1], self._hidden_size], initializer=input_matrix_init)
                inputs = math_ops.matmul(inputs, input_matrix)

            bias = vs.get_variable(
                "modReLUBias", [self._hidden_size], initializer=init_ops.constant_initializer())
            output = self._activation((inputs + state), bias, self._comp)

        return output, output 
Example #14
Source File: GORU.py    From AmusingPythonCodes with MIT License 5 votes vote down vote up
def __call__(self, inputs, state, scope=None):
        with vs.variable_scope(scope or "goru_cell"):
            U_init = init_ops.random_uniform_initializer(-0.01, 0.01)
            b_init = init_ops.constant_initializer(2.)
            mod_b_init = init_ops.constant_initializer(0.01)

            U = vs.get_variable("U", [inputs.get_shape()[-1], self._hidden_size * 3], dtype=tf.float32,
                                initializer=U_init)
            Ux = math_ops.matmul(inputs, U)
            U_cx, U_rx, U_gx = array_ops.split(Ux, 3, axis=1)

            W_r = vs.get_variable("W_r", [self._hidden_size, self._hidden_size], dtype=tf.float32, initializer=U_init)
            W_g = vs.get_variable("W_g", [self._hidden_size, self._hidden_size], dtype=tf.float32, initializer=U_init)
            W_rh = math_ops.matmul(state, W_r)
            W_gh = math_ops.matmul(state, W_g)

            bias_r = vs.get_variable("bias_r", [self._hidden_size], dtype=tf.float32, initializer=b_init)
            bias_g = vs.get_variable("bias_g", [self._hidden_size], dtype=tf.float32)
            bias_c = vs.get_variable("bias_c", [self._hidden_size], dtype=tf.float32, initializer=mod_b_init)

            r_tmp = U_rx + W_rh + bias_r
            g_tmp = U_gx + W_gh + bias_g
            r = math_ops.sigmoid(r_tmp)

            g = math_ops.sigmoid(g_tmp)

            Unitaryh = _eunn_loop(state, self._capacity, self.diag_vec, self.off_vec, self.diag, self._fft)
            c = modrelu(math_ops.multiply(r, Unitaryh) + U_cx, bias_c, False)
            new_state = math_ops.multiply(g, state) + math_ops.multiply(1 - g, c)

        return new_state, new_state 
Example #15
Source File: backend.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 5 votes vote down vote up
def random_uniform_variable(shape, low, high, dtype=None, name=None, seed=None):
  """Instantiates a variable with values drawn from a uniform distribution.

  Arguments:
      shape: Tuple of integers, shape of returned Keras variable.
      low: Float, lower boundary of the output interval.
      high: Float, upper boundary of the output interval.
      dtype: String, dtype of returned Keras variable.
      name: String, name of returned Keras variable.
      seed: Integer, random seed.

  Returns:
      A Keras variable, filled with drawn samples.

  Example:
  ```python
      # TensorFlow example
      >>> kvar = K.random_uniform_variable((2,3), 0, 1)
      >>> kvar
      <tensorflow.python.ops.variables.Variable object at 0x10ab40b10>
      >>> K.eval(kvar)
      array([[ 0.10940075,  0.10047495,  0.476143  ],
             [ 0.66137183,  0.00869417,  0.89220798]], dtype=float32)
  ```
  """
  if dtype is None:
    dtype = floatx()
  tf_dtype = _convert_string_dtype(dtype)
  if seed is None:
    # ensure that randomness is conditioned by the Numpy RNG
    seed = np.random.randint(10e8)
  value = init_ops.random_uniform_initializer(
      low, high, dtype=tf_dtype, seed=seed)(shape)
  return variable(value, dtype=dtype, name=name)