Python tensorflow.python.ops.init_ops.ones_initializer() Examples
The following are 14
code examples of tensorflow.python.ops.init_ops.ones_initializer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.init_ops
, or try the search function
.
Example #1
Source File: feature_column_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testEmbeddingColumnWithWeightedSparseColumnForDNN(self): ids = tf.contrib.layers.sparse_column_with_keys( "ids", ["marlo", "omar", "stringer"]) ids_tensor = tf.SparseTensor(values=["stringer", "stringer", "marlo"], indices=[[0, 0], [1, 0], [1, 1]], shape=[3, 2]) weighted_ids = tf.contrib.layers.weighted_sparse_column(ids, "weights") weights_tensor = tf.SparseTensor(values=[10.0, 20.0, 30.0], indices=[[0, 0], [1, 0], [1, 1]], shape=[3, 2]) features = {"ids": ids_tensor, "weights": weights_tensor} embeded_sparse = tf.contrib.layers.embedding_column( weighted_ids, 1, combiner="sum", initializer=init_ops.ones_initializer) output = tf.contrib.layers.input_from_feature_columns(features, [embeded_sparse]) with self.test_session(): tf.global_variables_initializer().run() tf.initialize_all_tables().run() # score: (sum of weights) self.assertAllEqual(output.eval(), [[10.], [50.], [0.]])
Example #2
Source File: rmsprop.py From lambda-packs with MIT License | 5 votes |
def _create_slots(self, var_list): for v in var_list: init_rms = init_ops.ones_initializer(dtype=v.dtype) self._get_or_make_slot_with_initializer(v, init_rms, v.get_shape(), v.dtype, "rms", self._name) if self._centered: self._zeros_slot(v, "mg", self._name) self._zeros_slot(v, "momentum", self._name)
Example #3
Source File: normalization.py From lambda-packs with MIT License | 5 votes |
def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, center=True, scale=True, beta_initializer=init_ops.zeros_initializer(), gamma_initializer=init_ops.ones_initializer(), moving_mean_initializer=init_ops.zeros_initializer(), moving_variance_initializer=init_ops.ones_initializer(), beta_regularizer=None, gamma_regularizer=None, renorm=False, renorm_clipping=None, renorm_momentum=0.99, trainable=True, name=None, **kwargs): super(BatchNormalization, self).__init__( name=name, trainable=trainable, **kwargs) self.axis = axis self.momentum = momentum self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = beta_initializer self.gamma_initializer = gamma_initializer self.moving_mean_initializer = moving_mean_initializer self.moving_variance_initializer = moving_variance_initializer self.beta_regularizer = beta_regularizer self.gamma_regularizer = gamma_regularizer self.renorm = renorm if renorm: renorm_clipping = renorm_clipping or {} keys = ['rmax', 'rmin', 'dmax'] if set(renorm_clipping) - set(keys): raise ValueError('renorm_clipping %s contains keys not in %s' % (renorm_clipping, keys)) self.renorm_clipping = renorm_clipping self.renorm_momentum = renorm_momentum
Example #4
Source File: normalization.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, center=True, scale=True, beta_initializer=init_ops.zeros_initializer(), gamma_initializer=init_ops.ones_initializer(), moving_mean_initializer=init_ops.zeros_initializer(), moving_variance_initializer=init_ops.ones_initializer(), beta_regularizer=None, gamma_regularizer=None, trainable=True, name=None, **kwargs): super(BatchNormalization, self).__init__( name=name, trainable=trainable, **kwargs) self.axis = axis self.momentum = momentum self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = beta_initializer self.gamma_initializer = gamma_initializer self.moving_mean_initializer = moving_mean_initializer self.moving_variance_initializer = moving_variance_initializer self.beta_regularizer = beta_regularizer self.gamma_regularizer = gamma_regularizer
Example #5
Source File: variables_test.py From tf-slim with Apache License 2.0 | 5 votes |
def testInitializedVariableValue(self): with self.cached_session() as sess: a = variables_lib2.model_variable( 'a', [5], initializer=init_ops.ones_initializer()) sess.run(variables_lib.global_variables_initializer()) self.assertAllEqual(a.eval(), [1] * 5)
Example #6
Source File: feature_column_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testEmbeddingColumnForDNN(self): hashed_sparse = tf.contrib.layers.sparse_column_with_hash_bucket("wire", 10) wire_tensor = tf.SparseTensor(values=["omar", "stringer", "marlo"], indices=[[0, 0], [1, 0], [1, 1]], shape=[3, 2]) features = {"wire": wire_tensor} embeded_sparse = tf.contrib.layers.embedding_column( hashed_sparse, 1, combiner="sum", initializer=init_ops.ones_initializer) output = tf.contrib.layers.input_from_feature_columns(features, [embeded_sparse]) with self.test_session(): tf.global_variables_initializer().run() # score: (number of values) self.assertAllEqual(output.eval(), [[1.], [2.], [0.]])
Example #7
Source File: rnn_ops.py From video_prediction with MIT License | 5 votes |
def _norm(self, inputs, scope, bias_initializer): shape = inputs.get_shape()[-1:] gamma_init = init_ops.ones_initializer() beta_init = bias_initializer with vs.variable_scope(scope): # Initialize beta and gamma for use by normalizer. vs.get_variable("gamma", shape=shape, initializer=gamma_init) vs.get_variable("beta", shape=shape, initializer=beta_init) normalized = self._normalizer_fn(inputs, reuse=True, scope=scope) return normalized
Example #8
Source File: rnn_ops.py From video_prediction with MIT License | 5 votes |
def call(self, inputs, state): bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.ones_initializer() tile_concat = isinstance(inputs, (list, tuple)) if tile_concat: inputs, inputs_non_spatial = inputs with vs.variable_scope('gates'): inputs = array_ops.concat([inputs, state], axis=-1) concat = self._conv2d(inputs, 2 * self._filters, bias_ones) if tile_concat: concat = concat + self._dense(inputs_non_spatial, concat.shape[-1].value)[:, None, None, :] if self._normalizer_fn and not self._separate_norms: concat = self._norm(concat, "reset_update", bias_ones) r, u = array_ops.split(concat, 2, axis=-1) if self._normalizer_fn and self._separate_norms: r = self._norm(r, "reset", bias_ones) u = self._norm(u, "update", bias_ones) r, u = math_ops.sigmoid(r), math_ops.sigmoid(u) bias_zeros = self._bias_initializer if self._bias_initializer is None: bias_zeros = init_ops.zeros_initializer() with vs.variable_scope('candidate'): inputs = array_ops.concat([inputs, r * state], axis=-1) candidate = self._conv2d(inputs, self._filters, bias_zeros) if tile_concat: candidate = candidate + self._dense(inputs_non_spatial, candidate.shape[-1].value)[:, None, None, :] if self._normalizer_fn: candidate = self._norm(candidate, "state", bias_zeros) c = self._activation_fn(candidate) new_h = u * state + (1 - u) * c return new_h, new_h
Example #9
Source File: rmsprop.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _create_slots(self, var_list): for v in var_list: init_rms = init_ops.ones_initializer(dtype=v.dtype) self._get_or_make_slot_with_initializer(v, init_rms, v.get_shape(), v.dtype, "rms", self._name) if self._centered: self._zeros_slot(v, "mg", self._name) self._zeros_slot(v, "momentum", self._name)
Example #10
Source File: normalization.py From keras-lambda with MIT License | 5 votes |
def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, center=True, scale=True, beta_initializer=init_ops.zeros_initializer(), gamma_initializer=init_ops.ones_initializer(), moving_mean_initializer=init_ops.zeros_initializer(), moving_variance_initializer=init_ops.ones_initializer(), beta_regularizer=None, gamma_regularizer=None, trainable=True, name=None, **kwargs): super(BatchNormalization, self).__init__( name=name, trainable=trainable, **kwargs) self.axis = axis self.momentum = momentum self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = beta_initializer self.gamma_initializer = gamma_initializer self.moving_mean_initializer = moving_mean_initializer self.moving_variance_initializer = moving_variance_initializer self.beta_regularizer = beta_regularizer self.gamma_regularizer = gamma_regularizer
Example #11
Source File: layers_test.py From tf-slim with Apache License 2.0 | 4 votes |
def testCreateConvWithWeightDecay(self): random_seed.set_random_seed(0) height, width = 3, 3 with self.cached_session() as sess: images = random_ops.random_uniform((5, height, width, 3), seed=1) regularizer = regularizers.l2_regularizer(0.01) layers_lib.separable_conv2d( images, 32, [3, 3], 2, weights_regularizer=regularizer, weights_initializer=init_ops.ones_initializer()) self.assertEqual( len(ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)), 2) weight_decay = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)[0] self.assertEqual( weight_decay.op.name, 'SeparableConv2d/depthwise_kernel/Regularizer/l2_regularizer') sess.run(variables_lib.global_variables_initializer()) depth_weight_one = sess.run(weight_decay) weight_decay = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)[1] self.assertEqual( weight_decay.op.name, 'SeparableConv2d/pointwise_kernel/Regularizer/l2_regularizer') pointwise_weight_one = sess.run(weight_decay) regularizer = regularizers.l2_regularizer(1.0) layers_lib.separable_conv2d( images, 32, [3, 3], 2, weights_regularizer=regularizer, weights_initializer=init_ops.ones_initializer()) self.assertEqual( len(ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)), 4) weight_decay = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)[2] sess.run(variables_lib.global_variables_initializer()) depth_weight_two = sess.run(weight_decay) weight_decay = ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES)[3] pointwise_weight_two = sess.run(weight_decay) self.assertAllClose( [100.0 * depth_weight_one, 100.0 * pointwise_weight_one], [depth_weight_two, pointwise_weight_two])
Example #12
Source File: moving_averages.py From deep_image_model with Apache License 2.0 | 4 votes |
def _zero_debias(unbiased_var, value, decay): """Compute the delta required for a debiased Variable. All exponential moving averages initialized with Tensors are initialized to 0, and therefore are biased to 0. Variables initialized to 0 and used as EMAs are similarly biased. This function creates the debias updated amount according to a scale factor, as in https://arxiv.org/abs/1412.6980. To demonstrate the bias the results from 0-initialization, take an EMA that was initialized to `0` with decay `b`. After `t` timesteps of seeing the constant `c`, the variable have the following value: ``` EMA = 0*b^(t) + c*(1 - b)*b^(t-1) + c*(1 - b)*b^(t-2) + ... = c*(1 - b^t) ``` To have the true value `c`, we would divide by the scale factor `1 - b^t`. In order to perform debiasing, we use two shadow variables. One keeps track of the biased estimate, and the other keeps track of the number of updates that have occurred. Args: unbiased_var: A Variable representing the current value of the unbiased EMA. value: A Tensor representing the most recent value. decay: A Tensor representing `1-decay` for the EMA. Returns: The amount that the unbiased variable should be updated. Computing this tensor will also update the shadow variables appropriately. """ with variable_scope.variable_scope( "ZeroDebias", values=[unbiased_var, value, decay]) as scope: with ops.colocate_with(unbiased_var): biased_var = variable_scope.get_variable( unbiased_var.op.name + "_biased", initializer=init_ops.zeros_initializer( unbiased_var.get_shape(), dtype=unbiased_var.dtype), trainable=False) # Initializing the local_step to `0` would cause problems with the # debiasing equation, so we instead initialize to `1`. local_step = variable_scope.get_variable( unbiased_var.op.name + "_local_step", initializer=init_ops.ones_initializer([], dtype=unbiased_var.dtype), trainable=False) # Get an update ops for both shadow variables. update_biased = state_ops.assign_sub(biased_var, (biased_var - value) * decay, name=scope.name) update_local_step = local_step.assign_add(1) # Compute the value of the delta to update the unbiased EMA. Make sure to # use the new values of the biased variable and the local step. with ops.control_dependencies([update_biased, update_local_step]): # This function gets `1 - decay`, so use `1.0 - decay` in the exponent. unbiased_ema_delta = (unbiased_var - biased_var.ref() / (1 - math_ops.pow(1.0 - decay, local_step.ref()))) return unbiased_ema_delta
Example #13
Source File: attention_wrappers.py From language with Apache License 2.0 | 4 votes |
def _fixed_memory_luong_score(query, keys, scale): """Implements Luong-style (multiplicative) scoring function. Assumes that keys have batch dimension of 1 (i.e., fixed memory bank). Args: query: Tensor, shape `[batch_size, num_units]` to compare to keys. keys: Processed memory, shape `[1, max_time, num_units]`. scale: Whether to apply a scale to the score function. Returns: A `[batch_size, max_time]` tensor of unnormalized score values. Raises: ValueError: If `key` and `query` depths do not match. """ depth = query.get_shape()[-1] key_units = keys.get_shape()[-1] if depth != key_units: raise ValueError( "Incompatible or unknown inner dimensions between query and keys. " "Query (%s) has units: %s. Keys (%s) have units: %s. " "Perhaps you need to set num_units to the keys' dimension (%s)?" % (query, depth, keys, key_units, key_units)) dtype = query.dtype # Reshape from [1, memory_size, depth] to [memory_size, depth] for matmul. keys = array_ops.squeeze(keys, 0) # Inner product along the query units dimension. # matmul shapes: query is [batch_size, depth] and # keys is [max_time, depth]. # the inner product is asked to **transpose keys' inner shape** to get a # matmul on: # [batch_size, depth] . [depth, max_time] # resulting in an output shape of: # [batch_size, max_time]. # we then squeeze out the center singleton dimension. score = math_ops.matmul(query, keys, transpose_b=True) if scale: # Scalar used in weight scaling g = variable_scope.get_variable( "attention_g", dtype=dtype, initializer=init_ops.ones_initializer, shape=()) score = g * score return score
Example #14
Source File: normalization.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def __init__(self, axis=-1, momentum=0.99, epsilon=1e-3, center=True, scale=True, beta_initializer=init_ops.zeros_initializer(), gamma_initializer=init_ops.ones_initializer(), moving_mean_initializer=init_ops.zeros_initializer(), moving_variance_initializer=init_ops.ones_initializer(), beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, renorm=False, renorm_clipping=None, renorm_momentum=0.99, fused=None, trainable=True, name=None, **kwargs): super(BatchNormalization, self).__init__( name=name, trainable=trainable, **kwargs) self.axis = axis self.momentum = momentum self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = beta_initializer self.gamma_initializer = gamma_initializer self.moving_mean_initializer = moving_mean_initializer self.moving_variance_initializer = moving_variance_initializer self.beta_regularizer = beta_regularizer self.gamma_regularizer = gamma_regularizer self.beta_constraint = beta_constraint self.gamma_constraint = gamma_constraint self.renorm = renorm if fused is None: fused = True self.fused = fused self._bessels_correction_test_only = True if renorm: renorm_clipping = renorm_clipping or {} keys = ['rmax', 'rmin', 'dmax'] if set(renorm_clipping) - set(keys): raise ValueError('renorm_clipping %s contains keys not in %s' % (renorm_clipping, keys)) self.renorm_clipping = renorm_clipping self.renorm_momentum = renorm_momentum