Python pyprind.prog_bar() Examples

The following are 5 code examples of pyprind.prog_bar(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pyprind , or try the search function .
Example #1
Source File: test_progress_bar.py    From pyprind with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_generator():
    for i in pyprind.prog_bar(range(n), stream=sys.stdout):
        time.sleep(sleeptime) 
Example #2
Source File: utils_conf.py    From VIP with MIT License 5 votes vote down vote up
def __new__(cls, iterable=None, desc=None, total=None, leave=True,
                backend=None, verbose=True):
        if backend is None:
            backend = Progressbar.backend

        if not verbose:
            backend = "hide"

        if backend == "tqdm":
            from tqdm import tqdm
            return tqdm(iterable=iterable, desc=desc, total=total, leave=leave,
                        ascii=True, ncols=80, file=sys.stdout,
                        bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed"
                                   "}<{remaining}{postfix}]") # remove rate_fmt
        elif backend == "tqdm_notebook":
            from tqdm import tqdm_notebook
            return tqdm_notebook(iterable=iterable, desc=desc, total=total,
                                 leave=leave)
        elif backend == "pyprind":
            from pyprind import ProgBar, prog_bar
            ProgBar._adjust_width = lambda self: None  # keep constant width
            if iterable is None:
                return ProgBar(total, title=desc, stream=1)
            else:
                return prog_bar(iterable, title=desc, stream=1,
                                iterations=total)
        elif backend == "hide":
            return NoProgressbar(iterable=iterable)
        else:
            raise NotImplementedError("unknown backend") 
Example #3
Source File: ddpg.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 4 votes vote down vote up
def train(self):

        memory = ReplayMem(
            obs_dim=self.env.observation_space.flat_dim,
            act_dim=self.env.action_space.flat_dim,
            memory_size=self.memory_size)

        itr = 0
        path_length = 0
        path_return = 0
        end = False
        obs = self.env.reset()

        for epoch in range(self.n_epochs):
            logger.push_prefix("epoch #%d | " % epoch)
            logger.log("Training started")
            for epoch_itr in pyprind.prog_bar(range(self.epoch_length)):
                # run the policy
                if end:
                    # reset the environment and stretegy when an episode ends
                    obs = self.env.reset()
                    self.strategy.reset()
                    # self.policy.reset()
                    self.strategy_path_returns.append(path_return)
                    path_length = 0
                    path_return = 0
                # note action is sampled from the policy not the target policy
                act = self.strategy.get_action(obs, self.policy)
                nxt, rwd, end, _ = self.env.step(act)

                path_length += 1
                path_return += rwd

                if not end and path_length >= self.max_path_length:
                    end = True
                    if self.include_horizon_terminal:
                        memory.add_sample(obs, act, rwd, end)
                else:
                    memory.add_sample(obs, act, rwd, end)

                obs = nxt

                if memory.size >= self.memory_start_size:
                    for update_time in range(self.n_updates_per_sample):
                        batch = memory.get_batch(self.batch_size)
                        self.do_update(itr, batch)

                itr += 1

            logger.log("Training finished")
            if memory.size >= self.memory_start_size:
                self.evaluate(epoch, memory)
            logger.dump_tabular(with_prefix=False)
            logger.pop_prefix()

        # self.env.terminate()
        # self.policy.terminate() 
Example #4
Source File: ddpg.py    From training_results_v0.6 with Apache License 2.0 4 votes vote down vote up
def train(self):

        memory = ReplayMem(
            obs_dim=self.env.observation_space.flat_dim,
            act_dim=self.env.action_space.flat_dim,
            memory_size=self.memory_size)

        itr = 0
        path_length = 0
        path_return = 0
        end = False
        obs = self.env.reset()

        for epoch in range(self.n_epochs):
            logger.push_prefix("epoch #%d | " % epoch)
            logger.log("Training started")
            for epoch_itr in pyprind.prog_bar(range(self.epoch_length)):
                # run the policy
                if end:
                    # reset the environment and stretegy when an episode ends
                    obs = self.env.reset()
                    self.strategy.reset()
                    # self.policy.reset()
                    self.strategy_path_returns.append(path_return)
                    path_length = 0
                    path_return = 0
                # note action is sampled from the policy not the target policy
                act = self.strategy.get_action(obs, self.policy)
                nxt, rwd, end, _ = self.env.step(act)

                path_length += 1
                path_return += rwd

                if not end and path_length >= self.max_path_length:
                    end = True
                    if self.include_horizon_terminal:
                        memory.add_sample(obs, act, rwd, end)
                else:
                    memory.add_sample(obs, act, rwd, end)

                obs = nxt

                if memory.size >= self.memory_start_size:
                    for update_time in range(self.n_updates_per_sample):
                        batch = memory.get_batch(self.batch_size)
                        self.do_update(itr, batch)

                itr += 1

            logger.log("Training finished")
            if memory.size >= self.memory_start_size:
                self.evaluate(epoch, memory)
            logger.dump_tabular(with_prefix=False)
            logger.pop_prefix()

        # self.env.terminate()
        # self.policy.terminate() 
Example #5
Source File: ddpg.py    From SNIPER-mxnet with Apache License 2.0 4 votes vote down vote up
def train(self):

        memory = ReplayMem(
            obs_dim=self.env.observation_space.flat_dim,
            act_dim=self.env.action_space.flat_dim,
            memory_size=self.memory_size)

        itr = 0
        path_length = 0
        path_return = 0
        end = False
        obs = self.env.reset()

        for epoch in xrange(self.n_epochs):
            logger.push_prefix("epoch #%d | " % epoch)
            logger.log("Training started")
            for epoch_itr in pyprind.prog_bar(range(self.epoch_length)):
                # run the policy
                if end:
                    # reset the environment and stretegy when an episode ends
                    obs = self.env.reset()
                    self.strategy.reset()
                    # self.policy.reset()
                    self.strategy_path_returns.append(path_return)
                    path_length = 0
                    path_return = 0
                # note action is sampled from the policy not the target policy
                act = self.strategy.get_action(obs, self.policy)
                nxt, rwd, end, _ = self.env.step(act)

                path_length += 1
                path_return += rwd

                if not end and path_length >= self.max_path_length:
                    end = True
                    if self.include_horizon_terminal:
                        memory.add_sample(obs, act, rwd, end)
                else:
                    memory.add_sample(obs, act, rwd, end)

                obs = nxt

                if memory.size >= self.memory_start_size:
                    for update_time in xrange(self.n_updates_per_sample):
                        batch = memory.get_batch(self.batch_size)
                        self.do_update(itr, batch)

                itr += 1

            logger.log("Training finished")
            if memory.size >= self.memory_start_size:
                self.evaluate(epoch, memory)
            logger.dump_tabular(with_prefix=False)
            logger.pop_prefix()

        # self.env.terminate()
        # self.policy.terminate()