Python tensorflow.python.saved_model.tag_constants.SERVING Examples
The following are 30
code examples of tensorflow.python.saved_model.tag_constants.SERVING().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.saved_model.tag_constants
, or try the search function
.
Example #1
Source File: h5topb.py From panotti with MIT License | 7 votes |
def export_h5_to_pb(path_to_h5, export_path): # Set the learning phase to Test since the model is already trained. K.set_learning_phase(0) # Load the Keras model keras_model = load_model(path_to_h5) # Build the Protocol Buffer SavedModel at 'export_path' builder = saved_model_builder.SavedModelBuilder(export_path) # Create prediction signature to be used by TensorFlow Serving Predict API signature = predict_signature_def(inputs={"images": keras_model.input}, outputs={"scores": keras_model.output}) with K.get_session() as sess: # Save the meta graph and the variables builder.add_meta_graph_and_variables(sess=sess, tags=[tag_constants.SERVING], signature_def_map={"predict": signature}) builder.save()
Example #2
Source File: bundle_shim_test.py From keras-lambda with MIT License | 6 votes |
def testSavedModelBasic(self): base_path = test.test_src_dir_path(SAVED_MODEL_PATH) ops.reset_default_graph() sess, meta_graph_def = ( bundle_shim.load_session_bundle_or_saved_model_bundle_from_path( base_path, tags=[tag_constants.SERVING], target="", config=config_pb2.ConfigProto(device_count={"CPU": 2}))) self.assertTrue(sess) # Check basic signature def property. signature_def = meta_graph_def.signature_def self.assertEqual(len(signature_def), 2) self.assertEqual( signature_def[signature_constants.REGRESS_METHOD_NAME].method_name, signature_constants.REGRESS_METHOD_NAME) signature = signature_def["tensorflow/serving/regress"] asset_path = os.path.join(base_path, saved_model_constants.ASSETS_DIRECTORY) with sess.as_default(): output1 = sess.run(["filename_tensor:0"]) self.assertEqual(["foo.txt"], output1)
Example #3
Source File: model.py From kryptoflow with GNU General Public License v3.0 | 6 votes |
def _store_tf(self, name, session): json_model_file = open(os.path.join(self.model_path, name + '.json'), "r").read() loaded_model = model_from_json(json_model_file) loaded_model.load_weights(os.path.join(self.model_path, name + '.h5')) builder = saved_model_builder.SavedModelBuilder(os.path.join(self.model_path, 'tf.txt')) signature = predict_signature_def(inputs={'states': loaded_model.input}, outputs={'price': loaded_model.output}) builder.add_meta_graph_and_variables(sess=session, tags=[tag_constants.SERVING], signature_def_map={'helpers': signature}) builder.save() _logger.info("Saved tf.txt model to disk")
Example #4
Source File: gtp_engine_tfgo.py From tensorflow-recipes with Apache License 2.0 | 6 votes |
def __init__(self, name, export_dir): """Init Tensorflow Go Engine Args: name (str): name of entity export_dir (str): path to exported tensorflow model """ assert os.path.isdir(export_dir) # we will use gnugo to guide our network self.assistant = GnuGoEngine('assistant', verbose=False) # create session and load network self.sess = tf.Session(graph=tf.Graph(), config=tf.ConfigProto(allow_soft_placement=True)) tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], export_dir) # get input node, output node self.features = self.sess.graph.get_tensor_by_name('board_plhdr:0') self.prob = self.sess.graph.get_tensor_by_name('probabilities:0')
Example #5
Source File: 01_freeze_the_saved_model_v1.py From PINTO_model_zoo with MIT License | 6 votes |
def freeze_model(saved_model_dir, output_node_names, output_filename): output_graph_filename = os.path.join(saved_model_dir, output_filename) initializer_nodes = '' freeze_graph.freeze_graph( input_saved_model_dir=saved_model_dir, output_graph=output_graph_filename, saved_model_tags = tag_constants.SERVING, output_node_names=output_node_names, initializer_nodes=initializer_nodes, input_graph=None, input_saver=False, input_binary=False, input_checkpoint=None, restore_op_name=None, filename_tensor_name=None, clear_devices=True, input_meta_graph=False, )
Example #6
Source File: save_tfs_model.py From image-quality-assessment with Apache License 2.0 | 6 votes |
def main(base_model_name, weights_file, export_path): # Load model and weights nima = Nima(base_model_name, weights=None) nima.build() nima.nima_model.load_weights(weights_file) # Tell keras that this will be used for making predictions K.set_learning_phase(0) # CustomObject required by MobileNet with CustomObjectScope({'relu6': relu6, 'DepthwiseConv2D': DepthwiseConv2D}): builder = saved_model_builder.SavedModelBuilder(export_path) signature = predict_signature_def( inputs={'input_image': nima.nima_model.input}, outputs={'quality_prediction': nima.nima_model.output} ) builder.add_meta_graph_and_variables( sess=K.get_session(), tags=[tag_constants.SERVING], signature_def_map={'image_quality': signature} ) builder.save() print(f'TF model exported to: {export_path}')
Example #7
Source File: 02_freeze_the_saved_model_v1.py From PINTO_model_zoo with MIT License | 6 votes |
def freeze_model(saved_model_dir, output_node_names, output_filename): output_graph_filename = os.path.join(saved_model_dir, output_filename) initializer_nodes = '' freeze_graph.freeze_graph( input_saved_model_dir=saved_model_dir, output_graph=output_graph_filename, saved_model_tags = tag_constants.SERVING, output_node_names=output_node_names, initializer_nodes=initializer_nodes, input_graph=None, input_saver=False, input_binary=False, input_checkpoint=None, restore_op_name=None, filename_tensor_name=None, clear_devices=True, input_meta_graph=False, )
Example #8
Source File: 02_freeze_the_saved_model_v2.py From PINTO_model_zoo with MIT License | 6 votes |
def freeze_model(saved_model_dir, output_node_names, output_filename): output_graph_filename = os.path.join(saved_model_dir, output_filename) initializer_nodes = '' freeze_graph.freeze_graph( input_saved_model_dir=saved_model_dir, output_graph=output_graph_filename, saved_model_tags = tag_constants.SERVING, output_node_names=output_node_names, initializer_nodes=initializer_nodes, input_graph=None, input_saver=False, input_binary=False, input_checkpoint=None, restore_op_name=None, filename_tensor_name=None, clear_devices=True, input_meta_graph=False, )
Example #9
Source File: h5tf.py From models with Apache License 2.0 | 6 votes |
def export_h5_to_pb(path_to_h5, export_path): # Set the learning phase to Test since the model is already trained. K.set_learning_phase(0) # Load the Keras model keras_model = load_model(path_to_h5) # Build the Protocol Buffer SavedModel at 'export_path' builder = saved_model_builder.SavedModelBuilder(export_path) # Create prediction signature to be used by TensorFlow Serving Predict API signature = predict_signature_def(inputs={ "http": keras_model.input}, outputs={"probability": keras_model.output}) with K.get_session() as sess: # Save the meta graph and the variables builder.add_meta_graph_and_variables(sess=sess, tags=[tag_constants.SERVING], signature_def_map={"predict": signature}) builder.save()
Example #10
Source File: bundle_shim_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testSavedModelBasic(self): base_path = test.test_src_dir_path(SAVED_MODEL_PATH) ops.reset_default_graph() sess, meta_graph_def = ( bundle_shim.load_session_bundle_or_saved_model_bundle_from_path( base_path, tags=[tag_constants.SERVING], target="", config=config_pb2.ConfigProto(device_count={"CPU": 2}))) self.assertTrue(sess) # Check basic signature def property. signature_def = meta_graph_def.signature_def self.assertEqual(len(signature_def), 2) self.assertEqual( signature_def[signature_constants.REGRESS_METHOD_NAME].method_name, signature_constants.REGRESS_METHOD_NAME) signature = signature_def["tensorflow/serving/regress"] asset_path = os.path.join(base_path, saved_model_constants.ASSETS_DIRECTORY) with sess.as_default(): output1 = sess.run(["filename_tensor:0"]) self.assertEqual(["foo.txt"], output1)
Example #11
Source File: export_model.py From Y8M with Apache License 2.0 | 5 votes |
def export_model(self, model_dir, global_step_val, last_checkpoint): """Exports the model so that it can used for batch predictions.""" with self.graph.as_default(): with tf.Session() as session: session.run(tf.global_variables_initializer()) self.saver.restore(session, last_checkpoint) signature = signature_def_utils.build_signature_def( inputs=self.inputs, outputs=self.outputs, method_name=signature_constants.PREDICT_METHOD_NAME) signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature} model_builder = saved_model_builder.SavedModelBuilder(model_dir) model_builder.add_meta_graph_and_variables(session, tags=[tag_constants.SERVING], signature_def_map=signature_map, clear_devices=True) model_builder.save()
Example #12
Source File: infer.py From cloudml-edge-automation with Apache License 2.0 | 5 votes |
def __init__(self): model_path = os.environ.get('MODEL_PATH', '/model') self.sess = tf.Session(graph=tf.Graph()) saved_metagraphdef = tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], model_path) self.inputs_tensor_info = signature_def_utils.get_signature_def_by_key( saved_metagraphdef, signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY).inputs outputs_tensor_info = signature_def_utils.get_signature_def_by_key( saved_metagraphdef, signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY).outputs self.output_tensor_keys_sorted = sorted(outputs_tensor_info.keys()) self.output_tensor_names_sorted = [ outputs_tensor_info[tensor_key].name for tensor_key in self.output_tensor_keys_sorted ]
Example #13
Source File: export_model.py From youtube8mchallenge with Apache License 2.0 | 5 votes |
def export_model(self, model_dir, global_step_val, last_checkpoint): """Exports the model so that it can used for batch predictions.""" with self.graph.as_default(): with tf.Session() as session: session.run(tf.global_variables_initializer()) self.saver.restore(session, last_checkpoint) signature = signature_def_utils.build_signature_def( inputs=self.inputs, outputs=self.outputs, method_name=signature_constants.PREDICT_METHOD_NAME) signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature} model_builder = saved_model_builder.SavedModelBuilder(model_dir) model_builder.add_meta_graph_and_variables(session, tags=[tag_constants.SERVING], signature_def_map=signature_map, clear_devices=True) model_builder.save()
Example #14
Source File: tf_launcher.py From open_model_zoo with Apache License 2.0 | 5 votes |
def _load_saved_model(model_dir): graph = tf.Graph() with graph.as_default(): with tf.Session() as sess: tf.saved_model.loader.load(sess, [tag_constants.SERVING], model_dir) return graph
Example #15
Source File: punctuator.py From keras-punctuator with MIT License | 5 votes |
def saveWithSavedModel(): # K.set_learning_phase(0) # all new operations will be in test mode from now on # wordIndex = loadWordIndex() model = createModel() model.load_weights(KERAS_WEIGHTS_FILE) export_path = os.path.join(PUNCTUATOR_DIR, 'graph') # where to save the exported graph shutil.rmtree(export_path, True) export_version = 1 # version number (integer) import tensorflow as tf sess = tf.Session() saver = tf.train.Saver(sharded=True) from tensorflow.contrib.session_bundle import exporter model_exporter = exporter.Exporter(saver) signature = exporter.classification_signature(input_tensor=model.input,scores_tensor=model.output) # model_exporter.init(sess.graph.as_graph_def(),default_graph_signature=signature) tf.initialize_all_variables().run(session=sess) # model_exporter.export(export_path, tf.constant(export_version), sess) from tensorflow.python.saved_model import builder as saved_model_builder builder = saved_model_builder.SavedModelBuilder(export_path) from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') from tensorflow.python.saved_model.signature_def_utils_impl import predict_signature_def signature_def = predict_signature_def( {signature_constants.PREDICT_INPUTS: model.input}, {signature_constants.PREDICT_OUTPUTS: model.output}) builder.add_meta_graph_and_variables( sess, [tag_constants.SERVING], signature_def_map={ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature_def }, legacy_init_op=legacy_init_op) builder.save()
Example #16
Source File: cnn.py From Frozen_Graph_TensorFlow with MIT License | 5 votes |
def save_signature(self, directory): signature = signature_def_utils.build_signature_def( inputs={ 'input': saved_model_utils.build_tensor_info(self.input), 'dropout_rate': saved_model_utils.build_tensor_info(self.dropout_rate) }, outputs={ 'output': saved_model_utils.build_tensor_info(self.output) }, method_name=signature_constants.PREDICT_METHOD_NAME) signature_map = { signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature } model_builder = saved_model_builder.SavedModelBuilder(directory) model_builder.add_meta_graph_and_variables( self.sess, tags=[tag_constants.SERVING], signature_def_map=signature_map, clear_devices=True) model_builder.save(as_text=False)
Example #17
Source File: inspect_signature.py From Frozen_Graph_TensorFlow with MIT License | 5 votes |
def retrieve_model_data_info(saved_model_path): with tf.Session() as sess: graph = tf.Graph() with graph.as_default(): metagraph = tf.saved_model.loader.load(sess, [tag_constants.SERVING], saved_model_path) inputs_mapping = dict( metagraph.signature_def['serving_default'].inputs) outputs_mapping = dict( metagraph.signature_def['serving_default'].outputs) print("Print output mapping: ", outputs_mapping) print("Print input mapping: ", inputs_mapping)
Example #18
Source File: freeze_graph.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def freeze_graph(input_graph, input_saver, input_binary, input_checkpoint, output_node_names, restore_op_name, filename_tensor_name, output_graph, clear_devices, initializer_nodes, variable_names_whitelist="", variable_names_blacklist="", input_meta_graph=None, input_saved_model_dir=None, saved_model_tags=tag_constants.SERVING): """Converts all variables in a graph and checkpoint into constants.""" input_graph_def = None if input_saved_model_dir: input_graph_def = saved_model_utils.get_meta_graph_def( input_saved_model_dir, saved_model_tags).graph_def elif input_graph: input_graph_def = _parse_input_graph_proto(input_graph, input_binary) input_meta_graph_def = None if input_meta_graph: input_meta_graph_def = _parse_input_meta_graph_proto( input_meta_graph, input_binary) input_saver_def = None if input_saver: input_saver_def = _parse_input_saver_proto(input_saver, input_binary) freeze_graph_with_def_protos( input_graph_def, input_saver_def, input_checkpoint, output_node_names, restore_op_name, filename_tensor_name, output_graph, clear_devices, initializer_nodes, variable_names_whitelist, variable_names_blacklist, input_meta_graph_def, input_saved_model_dir, saved_model_tags.split(","))
Example #19
Source File: export_saved_model_tpu_lib.py From models with Apache License 2.0 | 5 votes |
def run_inference_from_saved_model(inputs, saved_model_dir, input_placeholder_name='placeholder_tensor', repeat=1): """Loads saved model and run inference on TPU. Args: inputs: Input image with the same type as `input_type` saved_model_dir: The directory SavedModel being exported to. input_placeholder_name: input placeholder's name in SavedModel signature. repeat: Number of times to repeat running the provided input for profiling. Returns: A dict of resulting tensors. """ with tf.Graph().as_default(), tf.Session() as sess: meta_graph = loader.load(sess, [tag_constants.SERVING, tag_constants.TPU], saved_model_dir) sess.run(tpu.initialize_system()) key_prediction = signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY tensor_name_input = ( meta_graph.signature_def[key_prediction].inputs[input_placeholder_name] .name) tensor_name_output = { k: v.name for k, v in (meta_graph.signature_def[key_prediction].outputs.items()) } for _ in range(repeat): tensor_dict_out = sess.run( tensor_name_output, feed_dict={tensor_name_input: [inputs]}) sess.run(tpu.shutdown_system()) return tensor_dict_out
Example #20
Source File: tpu_estimator.py From xlnet with Apache License 2.0 | 5 votes |
def _add_meta_graph_for_mode(self, builder, input_receiver_fn_map, checkpoint_path, save_variables=True, mode=model_fn_lib.ModeKeys.PREDICT, export_tags=None, check_variables=True): if self._export_to_tpu and mode != model_fn_lib.ModeKeys.PREDICT: raise NotImplementedError( 'TPUEstimator only handles mode PREDICT for exporting ' 'when `export_to_tpu` is `True`; ' 'got {}.'.format(mode)) (super(TPUEstimator, self)._add_meta_graph_for_mode( builder, input_receiver_fn_map, checkpoint_path, save_variables, mode=mode, export_tags=export_tags, check_variables=check_variables)) if self._export_to_tpu: input_receiver_fn_map = { _REWRITE_FOR_INFERENCE_MODE: input_receiver_fn_map[mode] } export_tags = [tag_constants.SERVING, tag_constants.TPU] mode = _REWRITE_FOR_INFERENCE_MODE # See b/110052256 for why `check_variables` is `False`. (super(TPUEstimator, self)._add_meta_graph_for_mode( builder, input_receiver_fn_map, checkpoint_path, save_variables=False, mode=mode, export_tags=export_tags, check_variables=False))
Example #21
Source File: export_model.py From Y8M with Apache License 2.0 | 5 votes |
def export_model(self, model_dir, global_step_val, last_checkpoint): """Exports the model so that it can used for batch predictions.""" with self.graph.as_default(): with tf.Session(config=self.config) as session: session.run(tf.global_variables_initializer()) self.saver.restore(session, last_checkpoint) signature = signature_def_utils.build_signature_def( inputs=self.inputs, outputs=self.outputs, method_name=signature_constants.PREDICT_METHOD_NAME) signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature} model_builder = saved_model_builder.SavedModelBuilder(model_dir) model_builder.add_meta_graph_and_variables(session, tags=[tag_constants.SERVING], signature_def_map=signature_map, clear_devices=True) model_builder.save()
Example #22
Source File: model.py From MAX-Text-Sentiment-Classifier with Apache License 2.0 | 5 votes |
def __init__(self, path=DEFAULT_MODEL_PATH): logger.info('Loading model from: {}...'.format(path)) self.max_seq_length = 128 self.do_lower_case = True # Set Logging verbosity tf.logging.set_verbosity(tf.logging.INFO) # Loading the tf Graph self.graph = tf.Graph() self.sess = tf.Session(graph=self.graph) tf.saved_model.loader.load(self.sess, [tag_constants.SERVING], DEFAULT_MODEL_PATH) # Validate init_checkpoint tokenization.validate_case_matches_checkpoint(self.do_lower_case, DEFAULT_MODEL_PATH) # Initialize the dataprocessor self.processor = MAXAPIProcessor() # Get the labels self.label_list = self.processor.get_labels() # Initialize the tokenizer self.tokenizer = tokenization.FullTokenizer( vocab_file=f'{DEFAULT_MODEL_PATH}/vocab.txt', do_lower_case=self.do_lower_case) logger.info('Loaded model')
Example #23
Source File: models.py From Machine-Learning-with-TensorFlow-1.x with MIT License | 5 votes |
def export_saved_model(sess, export_path, input_tensor, output_tensor): from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import signature_def_utils from tensorflow.python.saved_model import tag_constants from tensorflow.python.saved_model import utils builder = saved_model_builder.SavedModelBuilder(export_path) prediction_signature = signature_def_utils.build_signature_def( inputs={'images': utils.build_tensor_info(input_tensor)}, outputs={ 'scores': utils.build_tensor_info(output_tensor) }, method_name=signature_constants.PREDICT_METHOD_NAME) legacy_init_op = tf.group( tf.tables_initializer(), name='legacy_init_op') builder.add_meta_graph_and_variables( sess, [tag_constants.SERVING], signature_def_map={ 'predict_images': prediction_signature, }, legacy_init_op=legacy_init_op) builder.save()
Example #24
Source File: export_model.py From Y8M with Apache License 2.0 | 5 votes |
def export_model(self, model_dir, global_step_val, last_checkpoint): """Exports the model so that it can used for batch predictions.""" with self.graph.as_default(): with tf.Session(config=self.config) as session: session.run(tf.global_variables_initializer()) self.saver.restore(session, last_checkpoint) signature = signature_def_utils.build_signature_def( inputs=self.inputs, outputs=self.outputs, method_name=signature_constants.PREDICT_METHOD_NAME) signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature} model_builder = saved_model_builder.SavedModelBuilder(model_dir) model_builder.add_meta_graph_and_variables(session, tags=[tag_constants.SERVING], signature_def_map=signature_map, clear_devices=True) model_builder.save()
Example #25
Source File: export_model.py From AttentionCluster with Apache License 2.0 | 5 votes |
def export_model(self, model_dir, global_step_val, last_checkpoint): """Exports the model so that it can used for batch predictions.""" with self.graph.as_default(): with tf.Session() as session: session.run(tf.global_variables_initializer()) self.saver.restore(session, last_checkpoint) signature = signature_def_utils.build_signature_def( inputs=self.inputs, outputs=self.outputs, method_name=signature_constants.PREDICT_METHOD_NAME) signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature} model_builder = saved_model_builder.SavedModelBuilder(model_dir) model_builder.add_meta_graph_and_variables(session, tags=[tag_constants.SERVING], signature_def_map=signature_map, clear_devices=True) model_builder.save()
Example #26
Source File: freeze.py From mobile-deeplab-v3-plus with MIT License | 5 votes |
def freeze_graph_func(model_dir, output_node_names, output_dir): """Extract the sub graph defined by the output nodes and convert all its variables into constant Args: model_dir: the root folder containing the checkpoint state file output_node_names: a string, containing all the output node's names, comma separated """ if not tf.gfile.Exists(model_dir): raise AssertionError( "Export directory doesn't exists. Please specify an export " "directory: %s" % model_dir) if not output_node_names: print("You need to supply the name of a node to --output_node_names.") return -1 sub_dirs = [name for name in os.listdir(model_dir) if os.path.isdir(os.path.join(model_dir, name))] model_dir = os.path.join(model_dir, sub_dirs[0]) output_graph_filename = os.path.join(output_dir, 'frozen_model.pb') initializer_nodes = '' freeze_graph( input_graph=None, input_saver=False, input_binary=False, input_checkpoint=None, output_node_names=output_node_names, restore_op_name=None, filename_tensor_name=None, output_graph=output_graph_filename, clear_devices=True, initializer_nodes=initializer_nodes, input_meta_graph=False, input_saved_model_dir=model_dir, saved_model_tags=tag_constants.SERVING) print('model has been frozen!')
Example #27
Source File: tpu_estimator.py From Chinese-XLNet with Apache License 2.0 | 5 votes |
def _add_meta_graph_for_mode(self, builder, input_receiver_fn_map, checkpoint_path, save_variables=True, mode=model_fn_lib.ModeKeys.PREDICT, export_tags=None, check_variables=True): if self._export_to_tpu and mode != model_fn_lib.ModeKeys.PREDICT: raise NotImplementedError( 'TPUEstimator only handles mode PREDICT for exporting ' 'when `export_to_tpu` is `True`; ' 'got {}.'.format(mode)) (super(TPUEstimator, self)._add_meta_graph_for_mode( builder, input_receiver_fn_map, checkpoint_path, save_variables, mode=mode, export_tags=export_tags, check_variables=check_variables)) if self._export_to_tpu: input_receiver_fn_map = { _REWRITE_FOR_INFERENCE_MODE: input_receiver_fn_map[mode] } export_tags = [tag_constants.SERVING, tag_constants.TPU] mode = _REWRITE_FOR_INFERENCE_MODE # See b/110052256 for why `check_variables` is `False`. (super(TPUEstimator, self)._add_meta_graph_for_mode( builder, input_receiver_fn_map, checkpoint_path, save_variables=False, mode=mode, export_tags=export_tags, check_variables=False))
Example #28
Source File: model.py From cloudml-edge-automation with Apache License 2.0 | 5 votes |
def export(self, last_checkpoint, output_dir): """Builds a prediction graph and xports the model. Args: last_checkpoint: Path to the latest checkpoint file from training. output_dir: Path to the folder to be used to output the model. """ logging.info('Exporting prediction graph to %s', output_dir) with tf.Session(graph=tf.Graph()) as sess: # Build and save prediction meta graph and trained variable values. inputs, outputs = self.build_prediction_graph() init_op = tf.global_variables_initializer() sess.run(init_op) self.restore_from_checkpoint(sess, self.inception_checkpoint_file, last_checkpoint) signature_def = build_signature(inputs=inputs, outputs=outputs) signature_def_map = { signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature_def } builder = saved_model_builder.SavedModelBuilder(output_dir) builder.add_meta_graph_and_variables( sess, tags=[tag_constants.SERVING], signature_def_map=signature_def_map) builder.save()
Example #29
Source File: export_model.py From Youtube-8M-WILLOW with Apache License 2.0 | 5 votes |
def export_model(self, model_dir, global_step_val, last_checkpoint): """Exports the model so that it can used for batch predictions.""" with self.graph.as_default(): with tf.Session() as session: session.run(tf.global_variables_initializer()) self.saver.restore(session, last_checkpoint) signature = signature_def_utils.build_signature_def( inputs=self.inputs, outputs=self.outputs, method_name=signature_constants.PREDICT_METHOD_NAME) signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature} model_builder = saved_model_builder.SavedModelBuilder(model_dir) model_builder.add_meta_graph_and_variables(session, tags=[tag_constants.SERVING], signature_def_map=signature_map, clear_devices=True) model_builder.save()
Example #30
Source File: model.py From cloudml-samples with Apache License 2.0 | 5 votes |
def to_savedmodel(model, export_path): """Convert the Keras HDF5 model into TensorFlow SavedModel.""" builder = saved_model_builder.SavedModelBuilder(export_path) signature = predict_signature_def( inputs={'input': model.inputs[0]}, outputs={'income': model.outputs[0]}) with K.get_session() as sess: builder.add_meta_graph_and_variables( sess=sess, tags=[tag_constants.SERVING], signature_def_map={ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature }) builder.save()