Python matplotlib.pylab.imshow() Examples

The following are 30 code examples of matplotlib.pylab.imshow(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module matplotlib.pylab , or try the search function .
Example #1
Source File: graph-bot.py    From discord-bots with MIT License 6 votes vote down vote up
def matrix(msg, mobj):
    """
    Interpret a user string, convert it to a list and graph it as a matrix
    Uses ast.literal_eval to parse input into a list
    """
    fname = bot_data("{}.png".format(mobj.author.id))
    try:
        list_input = literal_eval(msg)
        if not isinstance(list_input, list):
            raise ValueError("Not a list")
        m = np_matrix(list_input)
        fig = plt.figure()
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(m, interpolation='nearest', cmap=plt.cm.ocean)
        plt.colorbar()
        plt.savefig(fname)
        await client.send_file(mobj.channel, fname)
        f_remove(fname)
        return
    except Exception as ex:
        logger("!matrix: {}".format(ex))
    return await client.send_message(mobj.channel, "Failed to render graph") 
Example #2
Source File: testfuncs.py    From ImageFusion with MIT License 6 votes vote down vote up
def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab as pl
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print(func.title)
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.__name__)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.__name__)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.__name__)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.__name__)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.__name__)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.__name__)
    pl.ion() 
Example #3
Source File: dataset.py    From Image-Restoration with MIT License 6 votes vote down vote up
def show_pred(images, predictions, ground_truth):
    # choose 10 indice from images and visualize them
    indice = [np.random.randint(0, len(images)) for i in range(40)]
    for i in range(0, 40):
        plt.figure()
        plt.subplot(1, 3, 1)
        plt.tight_layout()
        plt.title('deformed image')
        plt.imshow(images[indice[i]])
        plt.subplot(1, 3, 2)
        plt.tight_layout()
        plt.title('predicted mask')
        plt.imshow(predictions[indice[i]])
        plt.subplot(1, 3, 3)
        plt.tight_layout()
        plt.title('ground truth label')
        plt.imshow(ground_truth[indice[i]])
    plt.show()

# Load Data Science Bowl 2018 training dataset 
Example #4
Source File: camera_test.py    From camera.py with MIT License 6 votes vote down vote up
def calibrate_division_model_test():
    img = rgb2gray(plt.imread('test/kamera2.png'))
    y0 = np.array(img.shape)[::-1][np.newaxis].T / 2.
    z_n = np.linalg.norm(np.array(img.shape) / 2.)
    points = pilab_annotate_load('test/kamera2_lines.xml')
    points_per_line = 5
    num_lines = points.shape[0] / points_per_line
    lines_coords = np.array([points[i * points_per_line:i * points_per_line + points_per_line] for i in xrange(num_lines)])
    c = camera.calibrate_division_model(lines_coords, y0, z_n)

    import matplotlib.cm as cm
    plt.figure()
    plt.imshow(img, cmap=cm.gray)
    for line in xrange(num_lines):
        x = lines_coords[line, :, 0]
        plt.plot(x, lines_coords[line, :, 1], 'g')
        mc = camera.fit_line(lines_coords[line].T)
        plt.plot(x, mc[0] * x + mc[1], 'y')
        xy = c.undistort(lines_coords[line].T)
        plt.plot(xy[0, :], xy[1, :], 'r')
    plt.show()
    plt.close() 
Example #5
Source File: make_dataset.py    From DeepLearningImplementations with MIT License 6 votes vote down vote up
def check_HDF5(size=64):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    hdf5_file = os.path.join(data_dir, "CelebA_%s_data.h5" % size)

    with h5py.File(hdf5_file, "r") as hf:
        data_color = hf["data"]
        for i in range(data_color.shape[0]):
            plt.figure()
            img = data_color[i, :, :, :].transpose(1,2,0)
            plt.imshow(img)
            plt.show()
            plt.clf()
            plt.close() 
Example #6
Source File: usage_example.py    From tensorflow-ffmpeg with MIT License 6 votes vote down vote up
def _show_video(video, fps=10):
    # Import matplotlib/pylab only if needed
    import matplotlib
    matplotlib.use('TkAgg')
    import matplotlib.pylab as pl
    pl.style.use('ggplot')
    pl.axis('off')

    if fps < 0:
        fps = 25
    video /= 255.  # Pylab works in [0, 1] range
    img = None
    pause_length = 1. / fps
    try:
        for f in range(video.shape[0]):
            im = video[f, :, :, :]
            if img is None:
                img = pl.imshow(im)
            else:
                img.set_data(im)
            pl.pause(pause_length)
            pl.draw()
    except:
        pass 
Example #7
Source File: make_dataset.py    From DeepLearningImplementations with MIT License 6 votes vote down vote up
def check_HDF5(size=64):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    hdf5_file = os.path.join(data_dir, "CelebA_%s_data.h5" % size)

    with h5py.File(hdf5_file, "r") as hf:
        data_color = hf["data"]
        for i in range(data_color.shape[0]):
            plt.figure()
            img = data_color[i, :, :, :].transpose(1,2,0)
            plt.imshow(img)
            plt.show()
            plt.clf()
            plt.close() 
Example #8
Source File: make_dataset.py    From DeepLearningImplementations with MIT License 6 votes vote down vote up
def check_HDF5(size):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    hdf5_file = os.path.join(data_dir, "lfw_%s_data.h5" % size)

    with h5py.File(hdf5_file, "r") as hf:
        data_color = hf["data"]
        label = hf["labels"]
        attrs = label.attrs["label_names"]
        for i in range(data_color.shape[0]):
            plt.figure(figsize=(20, 10))
            img = data_color[i, :, :, :].transpose(1,2,0)[:, :, ::-1]
            # Get the 10 labels with highest values
            idx = label[i].argsort()[-10:]
            plt.xlabel(",  ".join(attrs[idx]), fontsize=12)
            plt.imshow(img)
            plt.show()
            plt.clf()
            plt.close() 
Example #9
Source File: visualization_utils.py    From DeepLearningImplementations with MIT License 6 votes vote down vote up
def format_plot(X, epoch=None, title=None, figsize=(15, 10)):

    plt.figure(figsize=figsize)

    if X.shape[-1] == 1:
        plt.imshow(X[:, :, 0], cmap="gray")
    else:
        plt.imshow(X)

    plt.axis("off")
    plt.gca().xaxis.set_major_locator(mp.ticker.NullLocator())
    plt.gca().yaxis.set_major_locator(mp.ticker.NullLocator())

    if epoch is not None and title is None:
        save_path = os.path.join(FLAGS.fig_dir, "current_batch_%s.png" % epoch)
    elif epoch is not None and title is not None:
        save_path = os.path.join(FLAGS.fig_dir, "%s_%s.png" % (title, epoch))
    elif title is not None:
        save_path = os.path.join(FLAGS.fig_dir, "%s.png" % title)
    plt.savefig(save_path, bbox_inches='tight', pad_inches=0)
    plt.clf()
    plt.close() 
Example #10
Source File: testfuncs.py    From neural-network-animation with MIT License 6 votes vote down vote up
def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab as pl
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print(func.title)
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.__name__)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.__name__)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.__name__)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.__name__)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.__name__)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.__name__)
    pl.ion() 
Example #11
Source File: imaging.py    From isp with MIT License 6 votes vote down vote up
def __init__(self, name = "unknown", data = -1, is_show = False):
        self.name   = name
        self.data   = data
        self.size   = np.shape(self.data)
        self.is_show = is_show
        self.color_space = "unknown"
        self.bayer_pattern = "unknown"
        self.channel_gain = (1.0, 1.0, 1.0, 1.0)
        self.bit_depth = 0
        self.black_level = (0, 0, 0, 0)
        self.white_level = (1, 1, 1, 1)
        self.color_matrix = [[1., .0, .0],\
                             [.0, 1., .0],\
                             [.0, .0, 1.]] # xyz2cam
        self.min_value = np.min(self.data)
        self.max_value = np.max(self.data)
        self.data_type = self.data.dtype

        # Display image only isShow = True
        if (self.is_show):
            plt.imshow(self.data)
            plt.show() 
Example #12
Source File: testfuncs.py    From matplotlib-4-abaqus with MIT License 6 votes vote down vote up
def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab as pl
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print(func.title)
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.func_name)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.func_name)
    pl.ion() 
Example #13
Source File: prod_basis.py    From pyscf with Apache License 2.0 6 votes vote down vote up
def generate_png_chess_dp_vertex(self):
    """Produces pictures of the dominant product vertex a chessboard convention"""
    import matplotlib.pylab as plt
    plt.ioff()
    dab2v = self.get_dp_vertex_doubly_sparse()
    for i, ab in enumerate(dab2v): 
        fname = "chess-v-{:06d}.png".format(i)
        print('Matrix No.#{}, Size: {}, Type: {}'.format(i+1, ab.shape, type(ab)), fname)
        if type(ab) != 'numpy.ndarray': ab = ab.toarray()
        fig = plt.figure()
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(ab, interpolation='nearest', cmap=plt.cm.ocean)
        plt.colorbar()
        plt.savefig(fname)
        plt.close(fig) 
Example #14
Source File: audio.py    From Self-Supervised-Speech-Pretraining-and-Representation-Learning with MIT License 6 votes vote down vote up
def plot_spectrogram_to_numpy(spectrogram):
    spectrogram = spectrogram.transpose(1, 0)
    fig, ax = plt.subplots(figsize=(12, 3))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower",
                   interpolation='none')
    plt.colorbar(im, ax=ax)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    fig.canvas.draw()
    data = _save_figure_to_numpy(fig)
    plt.close()
    return data


####################
# PLOT SPECTROGRAM #
#################### 
Example #15
Source File: streams.py    From convis with GNU General Public License v3.0 6 votes vote down vote up
def _repr_html_(self):
        from . import variable_describe
        def _plot(fn):
            from PIL import Image
            try:
                import matplotlib.pylab as plt
                t = np.array(Image.open(fn))
                plt.figure()
                plt.imshow(self._crop(t))
                plt.axis('off')
                return "<img src='data:image/png;base64," + variable_describe._plot_to_string() + "'>"
            except:
                return "<br/>Failed to open."
        s = "<b>ImageSequence</b> size="+str(self.size)
        s += ", offset = "+str(self.offset)
        s += ", repeat = "+str(self.repeat)
        s += ", is_color = "+str(self.is_color)
        s += ", [frame "+str(self.i)+"/"+str(len(self))+"]"
        s += "<div style='background:#ff;padding:10px'><b>Input Images:</b>"
        for t in np.unique(self.file_list)[:10]:
            s += "<div style='background:#fff; margin:10px;padding:10px; border-left: 4px solid #eee;'>"+str(t)+": "+_plot(t)+"</div>"
        s += "</div>"
        return s 
Example #16
Source File: testfuncs.py    From Computable with MIT License 6 votes vote down vote up
def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab as pl
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print(func.title)
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.func_name)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.func_name)
    pl.ion() 
Example #17
Source File: make_dataset.py    From DeepLearningImplementations with MIT License 6 votes vote down vote up
def check_HDF5(size=64):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    hdf5_file = os.path.join(data_dir, "CelebA_%s_data.h5" % size)

    with h5py.File(hdf5_file, "r") as hf:
        data_color = hf["data"]
        for i in range(data_color.shape[0]):
            plt.figure()
            img = data_color[i, :, :, :].transpose(1,2,0)
            plt.imshow(img)
            plt.show()
            plt.clf()
            plt.close() 
Example #18
Source File: make_dataset.py    From DeepLearningImplementations with MIT License 6 votes vote down vote up
def check_HDF5(jpeg_dir, nb_channels):
    """
    Plot images with landmarks to check the processing
    """

    # Get hdf5 file
    file_name = os.path.basename(jpeg_dir.rstrip("/"))
    hdf5_file = os.path.join(data_dir, "%s_data.h5" % file_name)

    with h5py.File(hdf5_file, "r") as hf:
        data_full = hf["train_data_full"]
        data_sketch = hf["train_data_sketch"]
        for i in range(data_full.shape[0]):
            plt.figure()
            img = data_full[i, :, :, :].transpose(1,2,0)
            img2 = data_sketch[i, :, :, :].transpose(1,2,0)
            img = np.concatenate((img, img2), axis=1)
            if nb_channels == 1:
                plt.imshow(img[:, :, 0], cmap="gray")
            else:
                plt.imshow(img)
            plt.show()
            plt.clf()
            plt.close() 
Example #19
Source File: evaluation.py    From deepecg with MIT License 5 votes vote down vote up
def plot_confusion_matrix(y_true, y_pred, classes, figure_size=(8, 8)):
    """This function plots a confusion matrix."""
    # Compute confusion matrix
    cm = confusion_matrix(y_true, y_pred)
    cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100

    # Build Laussen Labs colormap
    cmap = LinearSegmentedColormap.from_list('laussen_labs_green', ['w', '#43BB9B'], N=256)

    # Setup plot
    plt.figure(figsize=figure_size)

    # Plot confusion matrix
    plt.imshow(cm, interpolation='nearest', cmap=cmap)

    # Modify axes
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=90)
    plt.yticks(tick_marks, classes)
    thresh = cm.max() / 1.5
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, str(np.round(cm[i, j], 2)) + ' %', horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black", fontsize=20)
    plt.xticks(fontsize=16)
    plt.yticks(fontsize=16)
    plt.tight_layout()
    plt.ylabel('True Label', fontsize=25)
    plt.xlabel('Predicted Label', fontsize=25)

    plt.show() 
Example #20
Source File: audio.py    From Self-Supervised-Speech-Pretraining-and-Representation-Learning with MIT License 5 votes vote down vote up
def plot_spectrogram(spec, path):
    spec = spec.transpose(1, 0) # (seq_len, feature_dim) -> (feature_dim, seq_len)
    plt.gcf().clear()
    plt.figure(figsize=(12, 3))
    plt.imshow(spec, aspect="auto", origin="lower")
    plt.colorbar()
    plt.tight_layout()
    plt.savefig(path, dpi=300, format="png")
    plt.close() 


####################
# PLOT EMBEDDING #
#################### 
Example #21
Source File: data_utils.py    From Pix2Depth with GNU General Public License v3.0 5 votes vote down vote up
def plot_generated_batch(X_full, X_sketch, generator_model, batch_size, image_data_format, suffix, show_plot=False):

    # Generate images
    X_gen = generator_model.predict(X_sketch)

    X_sketch = inverse_normalization(X_sketch)
    X_full = inverse_normalization(X_full)
    X_gen = inverse_normalization(X_gen)

    Xs = X_sketch[:8]
    Xg = X_gen[:8]
    Xr = X_full[:8]

    if image_data_format == "channels_last":
        X = np.concatenate((Xs, Xg, Xr), axis=0)
        list_rows = []
        for i in range(int(X.shape[0] // 4)):
            Xr = np.concatenate([X[k] for k in range(4 * i, 4 * (i + 1))], axis=1)
            list_rows.append(Xr)

        Xr = np.concatenate(list_rows, axis=0)

    if image_data_format == "channels_first":
        X = np.concatenate((Xs, Xg, Xr), axis=0)
        list_rows = []
        for i in range(int(X.shape[0] // 4)):
            Xr = np.concatenate([X[k] for k in range(4 * i, 4 * (i + 1))], axis=2)
            list_rows.append(Xr)

        Xr = np.concatenate(list_rows, axis=1)
        Xr = Xr.transpose(1,2,0)

    if show_plot:
        if Xr.shape[-1] == 1:
            plt.imshow(Xr[:, :, 0], cmap="gray")
        else:
            plt.imshow(Xr)
    plt.axis("off")
    plt.savefig("../../figures/current_batch_%s.png" % suffix)
    plt.clf()
    plt.close() 
Example #22
Source File: audio.py    From Self-Supervised-Speech-Pretraining-and-Representation-Learning with MIT License 5 votes vote down vote up
def plot_attention(attn, path):
    fig = plt.figure(figsize=(5, 5))
    plt.imshow(attn)
    plt.savefig(path, format='png')
    plt.close() 
Example #23
Source File: data_utils.py    From DeepLearningImplementations with MIT License 5 votes vote down vote up
def plot_generated_batch(X_real, generator_model, batch_size, cat_dim, cont_dim, noise_dim, image_data_format, noise_scale=0.5):

    # Generate images
    y_cat = sample_cat(batch_size, cat_dim)
    y_cont = sample_noise(noise_scale, batch_size, cont_dim)
    noise_input = sample_noise(noise_scale, batch_size, noise_dim)
    # Produce an output
    X_gen = generator_model.predict([y_cat, y_cont, noise_input],batch_size=batch_size)

    X_real = inverse_normalization(X_real)
    X_gen = inverse_normalization(X_gen)

    Xg = X_gen[:8]
    Xr = X_real[:8]

    if image_data_format == "channels_last":
        X = np.concatenate((Xg, Xr), axis=0)
        list_rows = []
        for i in range(int(X.shape[0] / 4)):
            Xr = np.concatenate([X[k] for k in range(4 * i, 4 * (i + 1))], axis=1)
            list_rows.append(Xr)

        Xr = np.concatenate(list_rows, axis=0)

    if image_data_format == "channels_first":
        X = np.concatenate((Xg, Xr), axis=0)
        list_rows = []
        for i in range(int(X.shape[0] / 4)):
            Xr = np.concatenate([X[k] for k in range(4 * i, 4 * (i + 1))], axis=2)
            list_rows.append(Xr)

        Xr = np.concatenate(list_rows, axis=1)
        Xr = Xr.transpose(1,2,0)

    if Xr.shape[-1] == 1:
        plt.imshow(Xr[:, :, 0], cmap="gray")
    else:
        plt.imshow(Xr)
    plt.savefig("../../figures/current_batch.png")
    plt.clf()
    plt.close() 
Example #24
Source File: general_utils.py    From DeepLearningImplementations with MIT License 5 votes vote down vote up
def plot_batch(color_model, q_ab, X_batch_black, X_batch_color, batch_size, h, w, nb_q, epoch):

    # Format X_colorized
    X_colorized = color_model.predict(X_batch_black / 100.)[:, :, :, :-1]
    X_colorized = X_colorized.reshape((batch_size * h * w, nb_q))
    X_colorized = q_ab[np.argmax(X_colorized, 1)]
    X_a = X_colorized[:, 0].reshape((batch_size, 1, h, w))
    X_b = X_colorized[:, 1].reshape((batch_size, 1, h, w))
    X_colorized = np.concatenate((X_batch_black, X_a, X_b), axis=1).transpose(0, 2, 3, 1)
    X_colorized = [np.expand_dims(color.lab2rgb(im), 0) for im in X_colorized]
    X_colorized = np.concatenate(X_colorized, 0).transpose(0, 3, 1, 2)

    X_batch_color = [np.expand_dims(color.lab2rgb(im.transpose(1, 2, 0)), 0) for im in X_batch_color]
    X_batch_color = np.concatenate(X_batch_color, 0).transpose(0, 3, 1, 2)

    list_img = []
    for i, img in enumerate(X_colorized[:min(32, batch_size)]):
        arr = np.concatenate([X_batch_color[i], np.repeat(X_batch_black[i] / 100., 3, axis=0), img], axis=2)
        list_img.append(arr)

    plt.figure(figsize=(20,20))
    list_img = [np.concatenate(list_img[4 * i: 4 * (i + 1)], axis=2) for i in range(len(list_img) // 4)]
    arr = np.concatenate(list_img, axis=1)
    plt.imshow(arr.transpose(1,2,0))
    ax = plt.gca()
    ax.get_xaxis().set_ticks([])
    ax.get_yaxis().set_ticks([])
    plt.tight_layout()
    plt.savefig("../../figures/fig_epoch%s.png" % epoch)
    plt.clf()
    plt.close() 
Example #25
Source File: utils.py    From TemporalConvolutionalNetworks with MIT License 5 votes vote down vote up
def imshow_(x, **kwargs):
	if x.ndim == 2:
		plt.imshow(x, interpolation="nearest", **kwargs)
	elif x.ndim == 1:
		plt.imshow(x[:,None].T, interpolation="nearest", **kwargs)
		plt.yticks([])
	plt.axis("tight")

# ------------- Data ------------- 
Example #26
Source File: camera_test.py    From camera.py with MIT License 5 votes vote down vote up
def load_test():
    c = camera.Camera(1)
    c.load('test/camera_01.yaml')
    # pitch dimensions [-20, -10, 19, 9.5]  # xmin, ymin, xmax, ymax
    points = np.array([[-20, -10, 0], [-20, 9.5, 0], [19, 9.5, 0], [19, -10, 0], [-20, -10, 0]]).T
    c.plot_world_points(points, 'r-', solve_visibility=False)
    points = np.array([[0, -10, 0], [0, 9.5, 0]]).T
    c.plot_world_points(points, 'y-', solve_visibility=False)
    import matplotlib.pylab as plt
    plt.imshow(plt.imread('test/cam01.png'))
    # plt.show()
    plt.savefig('test/out/camera_load_test.png', dpi=150)
    plt.close() 
Example #27
Source File: device_saver.py    From angler with MIT License 5 votes vote down vote up
def _calc_trans_ortho(self):
        # input power
        self.W_in = self.simulation.W_in
        print("        -> W_in = {}".format(self.W_in))

        # linear powers
        self.W_right_lin = self.simulation.flux_probe('x', [-self.NPML[0]-int(self.l/2/self.dl), self.ny], int(self.H/2/self.dl))
        self.W_top_lin  = self.simulation.flux_probe('y', [self.nx, -self.NPML[1]-int(self.l/2/self.dl)], int(self.H/2/self.dl))

        # nonlinear powers
        self.W_right_nl = self.simulation.flux_probe('x', [-self.NPML[0]-int(self.l/2/self.dl), self.ny], int(self.H/2/self.dl), nl=True)
        self.W_top_nl  = self.simulation.flux_probe('y', [self.nx, -self.NPML[1]-int(self.l/2/self.dl)], int(self.H/2/self.dl), nl=True)


        print('        -> linear transmission (right)      = {:.4f}'.format(self.W_right_lin / self.W_in))
        print('        -> linear transmission (top)        = {:.4f}'.format(self.W_top_lin / self.W_in))
        print('        -> nonlinear transmission (right)   = {:.4f}'.format(self.W_right_nl / self.W_in))
        print('        -> nonlinear transmission (top)     = {:.4f}'.format(self.W_top_nl / self.W_in))

        self.S = [[self.W_top_lin / self.W_in, self.W_right_lin / self.W_in],
                  [self.W_top_nl / self.W_in,  self.W_right_nl / self.W_in]]

        plt.imshow(self.S, cmap='magma')
        plt.colorbar()
        plt.title('power matrix')
        plt.show() 
Example #28
Source File: device_saver.py    From angler with MIT License 5 votes vote down vote up
def _calc_trans_three(self):
        # input power
        self.W_in = self.simulation.W_in
        print("        -> W_in = {}".format(self.W_in))

        # linear powers
        self.W_top_lin = self.simulation.flux_probe('x', [-self.NPML[0]-int(self.l/2/self.dl), self.ny+int(self.d/2/self.dl)], int(self.H/2/self.dl))
        self.W_bot_lin = self.simulation.flux_probe('x', [-self.NPML[0]-int(self.l/2/self.dl), self.ny-int(self.d/2/self.dl)], int(self.H/2/self.dl))

        # nonlinear powers
        self.W_top_nl = self.simulation.flux_probe('x', [-self.NPML[0]-int(self.l/2/self.dl), self.ny+int(self.d/2/self.dl)], int(self.H/2/self.dl), nl=True)
        self.W_bot_nl = self.simulation.flux_probe('x', [-self.NPML[0]-int(self.l/2/self.dl), self.ny-int(self.d/2/self.dl)], int(self.H/2/self.dl), nl=True)


        print('        -> linear transmission (top)        = {:.4f}'.format(self.W_top_lin / self.W_in))
        print('        -> linear transmission (bottom)     = {:.4f}'.format(self.W_bot_lin / self.W_in))
        print('        -> nonlinear transmission (top)     = {:.4f}'.format(self.W_top_nl / self.W_in))
        print('        -> nonlinear transmission (bottom)  = {:.4f}'.format(self.W_bot_nl / self.W_in))

        self.S = [[self.W_top_lin / self.W_in, self.W_top_nl / self.W_in],
                  [self.W_bot_lin / self.W_in, self.W_bot_nl / self.W_in]]

        plt.imshow(self.S, cmap='magma')
        plt.colorbar()
        plt.title('power matrix')
        plt.show() 
Example #29
Source File: dataset.py    From UNet-pytorch with MIT License 5 votes vote down vote up
def show_batch(sample_batched):
    """Show image with landmarks for a batch of samples."""
    images_batch, masks_batch = sample_batched['image'].numpy().astype(np.uint8), sample_batched['mask'].numpy().astype(np.bool)
    batch_size = len(images_batch)
    for i in range(batch_size):
        plt.figure()
        plt.subplot(1, 2, 1)
        plt.tight_layout()
        plt.imshow(images_batch[i].transpose((1, 2, 0)))
        plt.subplot(1, 2, 2)
        plt.tight_layout()
        plt.imshow(np.squeeze(masks_batch[i].transpose((1, 2, 0))))

# Load Data Science Bowl 2018 training dataset 
Example #30
Source File: test_fields_fdfd.py    From ceviche with MIT License 5 votes vote down vote up
def test_Ez(self):
        print('\ttesting Ez')

        F = fdfd_ez(self.omega, self.dL, self.eps_r, self.npml)
        Hx, Hy, Ez = F.solve(self.source)
        plot_component = Ez
        field_max = np.max(np.abs(plot_component))
        plt.imshow(np.real(plot_component), cmap='RdBu', vmin=-field_max/5, vmax=field_max/5)
        plt.show()