Python matplotlib.pylab.savefig() Examples
The following are 30
code examples of matplotlib.pylab.savefig().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pylab
, or try the search function
.
Example #1
Source File: plot_errors_boxplot.py From MDI with MIT License | 7 votes |
def plot(params_dir): model_dirs = [name for name in os.listdir(params_dir) if os.path.isdir(os.path.join(params_dir, name))] df = defaultdict(list) for model_dir in model_dirs: df[re.sub('_bin_scaled_mono_True_ratio', '', model_dir)] = [ dd.io.load(path)['best_epoch']['validate_objective'] for path in glob.glob(os.path.join( params_dir, model_dir) + '/*.h5')] df = pd.DataFrame(dict([(k, pd.Series(v)) for k, v in df.iteritems()])) df.to_csv(os.path.basename(os.path.normpath(params_dir))) plt.figure(figsize=(16, 4), dpi=300) g = sns.boxplot(df) g.set_xticklabels(df.columns, rotation=45) plt.tight_layout() plt.savefig('{}_errors_box_plot.png'.format( os.path.join(IMAGES_DIRECTORY, os.path.basename(os.path.normpath(params_dir)))))
Example #2
Source File: benchmark.py From osqp_benchmarks with Apache License 2.0 | 6 votes |
def plot_performance_profiles(problems, solvers): """ Plot performance profiles in matplotlib for specified problems and solvers """ # Remove OSQP polish solver solvers = solvers.copy() for s in solvers: if "polish" in s: solvers.remove(s) df = pd.read_csv('./results/%s/performance_profiles.csv' % problems) plt.figure(0) for solver in solvers: plt.plot(df["tau"], df[solver], label=solver) plt.xlim(1., 10000.) plt.ylim(0., 1.) plt.xlabel(r'Performance ratio $\tau$') plt.ylabel('Ratio of problems solved') plt.xscale('log') plt.legend() plt.grid() plt.show(block=False) results_file = './results/%s/%s.png' % (problems, problems) print("Saving plots to %s" % results_file) plt.savefig(results_file)
Example #3
Source File: run_lookup.py From rasa_lookup_demo with Apache License 2.0 | 6 votes |
def plot_metrics(metric_list, save_path=None): # runs through each test case and adds a set of bars to a plot. Saves f, (ax1) = plt.subplots(1, 1) plt.grid(True) print_metrics(metric_list) bar_metrics(metric_list[0], ax1, index=0) bar_metrics(metric_list[1], ax1, index=1) bar_metrics(metric_list[2], ax1, index=2) if save_path is None: save_path = "img/bar_" + key + ".png" plt.savefig(save_path, dpi=400)
Example #4
Source File: testfuncs.py From Computable with MIT License | 6 votes |
def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.func_name) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.func_name) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.func_name) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.func_name) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.func_name) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.func_name) pl.ion()
Example #5
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_feat_importance(feature_names, clf, name): pylab.clf() coef_ = clf.coef_ important = np.argsort(np.absolute(coef_.ravel())) f_imp = feature_names[important] coef = coef_.ravel()[important] inds = np.argsort(coef) f_imp = f_imp[inds] coef = coef[inds] xpos = np.array(range(len(coef))) pylab.bar(xpos, coef, width=1) pylab.title('Feature importance for %s' % (name)) ax = pylab.gca() ax.set_xticks(np.arange(len(coef))) labels = ax.set_xticklabels(f_imp) for label in labels: label.set_rotation(90) filename = name.replace(" ", "_") pylab.savefig(os.path.join( CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
Example #6
Source File: prod_basis.py From pyscf with Apache License 2.0 | 6 votes |
def generate_png_chess_dp_vertex(self): """Produces pictures of the dominant product vertex a chessboard convention""" import matplotlib.pylab as plt plt.ioff() dab2v = self.get_dp_vertex_doubly_sparse() for i, ab in enumerate(dab2v): fname = "chess-v-{:06d}.png".format(i) print('Matrix No.#{}, Size: {}, Type: {}'.format(i+1, ab.shape, type(ab)), fname) if type(ab) != 'numpy.ndarray': ab = ab.toarray() fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.set_aspect('equal') plt.imshow(ab, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar() plt.savefig(fname) plt.close(fig)
Example #7
Source File: demo_mi.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_entropy(): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) title = "Entropy $H(X)$" pylab.title(title) pylab.xlabel("$P(X=$coin will show heads up$)$") pylab.ylabel("$H(X)$") pylab.xlim(xmin=0, xmax=1.1) x = np.arange(0.001, 1, 0.001) y = -x * np.log2(x) - (1 - x) * np.log2(1 - x) pylab.plot(x, y) # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in # [0,1,2,3,4]]) pylab.autoscale(tight=True) pylab.grid(True) filename = "entropy_demo.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
Example #8
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_confusion_matrix(cm, genre_list, name, title): pylab.clf() pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0) ax = pylab.axes() ax.set_xticks(range(len(genre_list))) ax.set_xticklabels(genre_list) ax.xaxis.set_ticks_position("bottom") ax.set_yticks(range(len(genre_list))) ax.set_yticklabels(genre_list) pylab.title(title) pylab.colorbar() pylab.grid(False) pylab.show() pylab.xlabel('Predicted class') pylab.ylabel('True class') pylab.grid(False) pylab.savefig( os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
Example #9
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_roc(auc_score, name, tpr, fpr, label=None): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) pylab.grid(True) pylab.plot([0, 1], [0, 1], 'k--') pylab.plot(fpr, tpr) pylab.fill_between(fpr, tpr, alpha=0.5) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('False Positive Rate') pylab.ylabel('True Positive Rate') pylab.title('ROC curve (AUC = %0.2f) / %s' % (auc_score, label), verticalalignment="bottom") pylab.legend(loc="lower right") filename = name.replace(" ", "_") pylab.savefig( os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
Example #10
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_feat_importance(feature_names, clf, name): pylab.figure(num=None, figsize=(6, 5)) coef_ = clf.coef_ important = np.argsort(np.absolute(coef_.ravel())) f_imp = feature_names[important] coef = coef_.ravel()[important] inds = np.argsort(coef) f_imp = f_imp[inds] coef = coef[inds] xpos = np.array(list(range(len(coef)))) pylab.bar(xpos, coef, width=1) pylab.title('Feature importance for %s' % (name)) ax = pylab.gca() ax.set_xticks(np.arange(len(coef))) labels = ax.set_xticklabels(f_imp) for label in labels: label.set_rotation(90) filename = name.replace(" ", "_") pylab.savefig(os.path.join( CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
Example #11
Source File: testfuncs.py From matplotlib-4-abaqus with MIT License | 6 votes |
def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.func_name) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.func_name) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.func_name) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.func_name) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.func_name) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.func_name) pl.ion()
Example #12
Source File: variable_describe.py From convis with GNU General Public License v3.0 | 6 votes |
def _plot_to_string(): try: from StringIO import StringIO make_bytes = lambda x: x.buf except ImportError: from io import BytesIO as StringIO make_bytes = lambda x: x.getbuffer() try: from urllib import quote except: from urllib.parse import quote import base64 import matplotlib.pylab as plt imgdata = StringIO() plt.savefig(imgdata) plt.close() imgdata.seek(0) image = base64.encodestring(make_bytes(imgdata)) return str(quote(image))
Example #13
Source File: kNN.py From statistical-learning-methods-note with Apache License 2.0 | 6 votes |
def plotKChart(self, misClassDict, saveFigPath): kList = [] misRateList = [] for k, misClassNum in misClassDict.iteritems(): kList.append(k) misRateList.append(1.0 - 1.0/k*misClassNum) fig = plt.figure(saveFigPath) plt.plot(kList, misRateList, 'r--') plt.title(saveFigPath) plt.xlabel('k Num.') plt.ylabel('Misclassified Rate') plt.legend(saveFigPath) plt.grid(True) plt.savefig(saveFigPath) plt.show() ################################### PART3 TEST ######################################## # 例子
Example #14
Source File: data_augmentation.py From ConvNetQuake with MIT License | 6 votes |
def plot_true_and_augmented_data(sample,noised_sample,label,n_examples): output_dir = os.path.split(FLAGS.output)[0] # Save augmented data plt.clf() fig, ax = plt.subplots(3,1) for t in range(noised_sample.shape[1]): ax[t].plot(noised_sample[:,t]) ax[t].set_xlabel('time (samples)') ax[t].set_ylabel('amplitude') ax[0].set_title('window {:03d}, cluster_id: {}'.format(n_examples,label)) plt.savefig(os.path.join(output_dir, "augmented_data", 'augmented_{:03d}.pdf'.format(n_examples))) plt.close() # Save true data plt.clf() fig, ax = plt.subplots(3,1) for t in range(sample.shape[1]): ax[t].plot(sample[:,t]) ax[t].set_xlabel('time (samples)') ax[t].set_ylabel('amplitude') ax[0].set_title('window {:03d}, cluster_id: {}'.format(n_examples,label)) plt.savefig(os.path.join(output_dir, "true_data", 'true__{:03d}.pdf'.format(n_examples))) plt.close()
Example #15
Source File: testfuncs.py From ImageFusion with MIT License | 6 votes |
def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.__name__) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.__name__) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.__name__) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.__name__) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.__name__) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.__name__) pl.ion()
Example #16
Source File: reportStats.py From gemBS with GNU General Public License v3.0 | 6 votes |
def drawMapqHistogram(self): """ From matplot lib plots a Mappping qualty histogram """ #1. PLOT BUILDING readsMapq = self.mapping_stats.mapping_quality_reads mapqList = list(range(len(readsMapq))) matplotlib.pyplot.ioff() figure = plt.figure() plt.bar(mapqList,readsMapq,width=1,align='center',facecolor='blue', alpha=0.75) plt.xlabel('MapQ') plt.ylabel('Fragments') plt.title('MapQ Histogram') plt.axis([0, 60,min(readsMapq), max(readsMapq)]) plt.grid(True) pylab.savefig(self.png_mapq_histogram) plt.close(figure)
Example #17
Source File: PlotComps.py From refinery with MIT License | 6 votes |
def main(): args = parse_args() jobpath, taskids = parse_jobpath_and_taskids(args) for taskid in taskids: taskpath = os.path.join(jobpath, taskid) if args.lap is not None: prefix, bLap = ModelReader.getPrefixForLapQuery(taskpath, args.lap) if bLap != args.lap: print 'Using saved lap: ', bLap else: prefix = 'Best' # default hmodel = ModelReader.load_model(taskpath, prefix) plotModelInNewFigure(jobpath, hmodel, args) if args.savefilename is not None: pylab.show(block=False) pylab.savefig(args.savefilename % (taskid)) if args.savefilename is None: pylab.show(block=True)
Example #18
Source File: graph-bot.py From discord-bots with MIT License | 6 votes |
def matrix(msg, mobj): """ Interpret a user string, convert it to a list and graph it as a matrix Uses ast.literal_eval to parse input into a list """ fname = bot_data("{}.png".format(mobj.author.id)) try: list_input = literal_eval(msg) if not isinstance(list_input, list): raise ValueError("Not a list") m = np_matrix(list_input) fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.set_aspect('equal') plt.imshow(m, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar() plt.savefig(fname) await client.send_file(mobj.channel, fname) f_remove(fname) return except Exception as ex: logger("!matrix: {}".format(ex)) return await client.send_message(mobj.channel, "Failed to render graph")
Example #19
Source File: testfuncs.py From neural-network-animation with MIT License | 6 votes |
def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.__name__) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.__name__) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.__name__) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.__name__) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.__name__) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.__name__) pl.ion()
Example #20
Source File: evaluate.py From text-classifier with Apache License 2.0 | 6 votes |
def plot_pr(auc_score, precision, recall, label=None, figure_path=None): """绘制R/P曲线""" try: from matplotlib import pylab pylab.figure(num=None, figsize=(6, 5)) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('Recall') pylab.ylabel('Precision') pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label)) pylab.fill_between(recall, precision, alpha=0.5) pylab.grid(True, linestyle='-', color='0.75') pylab.plot(recall, precision, lw=1) pylab.savefig(figure_path) except Exception as e: print("save image error with matplotlib") pass
Example #21
Source File: plotting_utils.py From nonparaSeq2seqVC_code with MIT License | 5 votes |
def plot_alignment(alignment, fn): # [4, encoder_step, decoder_step] fig, axes = plt.subplots(1, 2) for j in range(2): g = axes[j].imshow(alignment[j,:,:].T, aspect='auto', origin='lower', interpolation='none') plt.colorbar(g, ax=axes[j]) plt.savefig(fn) plt.close() return fn
Example #22
Source File: inference.py From nonparaSeq2seqVC_code with MIT License | 5 votes |
def plot_data(data, fn, figsize=(12, 4)): fig, axes = plt.subplots(1, len(data), figsize=figsize) for i in range(len(data)): if len(data) == 1: ax = axes else: ax = axes[i] g = ax.imshow(data[i], aspect='auto', origin='bottom', interpolation='none') plt.colorbar(g, ax=ax) plt.savefig(fn)
Example #23
Source File: inference_utils.py From nonparaSeq2seqVC_code with MIT License | 5 votes |
def plot_data(data, fn, figsize=(12, 4)): fig, axes = plt.subplots(1, len(data), figsize=figsize) for i in range(len(data)): if len(data) == 1: ax = axes else: ax = axes[i] g = ax.imshow(data[i], aspect='auto', origin='bottom', interpolation='none') plt.colorbar(g, ax=ax) plt.savefig(fn)
Example #24
Source File: lr_finder.py From signaltrain with GNU General Public License v3.0 | 5 votes |
def lrfind(model, dataloader, optimizer, calc_loss, start=1e-6, stop=4e-3, num_lrs=150, to_screen=False): """ Learning Rate finder. See leslie howard, sylvian gugger & jeremy howard's work """ print("Running LR Find:",end="",flush=True) lrs, losses = [], [] lr_tries = np.logspace(np.log10(start), np.log10(stop), num_lrs) ind, count, repeat = 0, 0, 3 for x, y, knobs in dataloader: count+=1 if ind >= len(lr_tries): break lr_try = lr_tries[ind] if count % repeat ==0: # repeat over this many data points per lr value ind+=1 print(".",sep="",end="",flush=True) optimizer.param_groups[0]['lr'] = lr_try #x_cuda, y_cuda, knobs_cuda = datagen.new() x_cuda, y_cuda, knobs_cuda = x.to(device), y.to(device), knobs.to(device) x_hat, mag, mag_hat = model.forward(x_cuda, knobs_cuda) loss = calc_loss(x_hat.float() ,y_cuda.float(), mag.float()) lrs.append(lr_try) losses.append(loss.item()) optimizer.zero_grad() loss.backward() model.clip_grad_norm_() optimizer.step() plt.figure(1) plt.semilogx(lrs,losses) if to_screen: plt.show() else: outfile = 'lrfind.png' plt.savefig(outfile) plt.close(plt.gcf()) print("\nLR Find finished. See "+outfile) return
Example #25
Source File: io_methods.py From signaltrain with GNU General Public License v3.0 | 5 votes |
def plot_valdata(x_val_cuda, knobs_val_cuda, y_val_cuda, y_val_hat_cuda, effect, \ epoch, loss_val, file_prefix='val_data', num_plots=50, target_size=None): x_size = len(x_val_cuda.data.cpu().numpy()[0]) if target_size is None: y_size = len(y_val_cuda.data.cpu().numpy()[0]) else: y_size = target_size t_small = range(x_size-y_size, x_size) for plot_i in range(0, num_plots): x_val = x_val_cuda.data.cpu().numpy() knobs_w = effect.knobs_wc( knobs_val_cuda.data.cpu().numpy()[plot_i,:] ) plt.figure(plot_i,figsize=(6,8)) titlestr = f'{effect.name} Val data, epoch {epoch+1}, loss_val = {loss_val.item():.3e}\n' for i in range(len(effect.knob_names)): titlestr += f'{effect.knob_names[i]} = {knobs_w[i]:.2f}' if i < len(effect.knob_names)-1: titlestr += ', ' plt.suptitle(titlestr) plt.subplot(3, 1, 1) plt.plot(x_val[plot_i, :], 'b', label='Input') plt.ylim(-1,1) plt.xlim(0,x_size) plt.legend() plt.subplot(3, 1, 2) y_val = y_val_cuda.data.cpu().numpy() plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target') plt.xlim(0,x_size) plt.ylim(-1,1) plt.legend() plt.subplot(3, 1, 3) plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target') y_val_hat = y_val_hat_cuda.data.cpu().numpy() plt.plot(t_small, y_val_hat[plot_i, -y_size:], c=(0,0.5,0,0.85), label='Predicted') plt.ylim(-1,1) plt.xlim(0,x_size) plt.legend() filename = file_prefix + '_' + str(plot_i) + '.png' savefig(filename) return
Example #26
Source File: reportStats.py From gemBS with GNU General Public License v3.0 | 5 votes |
def drawInsertSizePlot(self): """ From matplot lib plots a Insert Size Plot """ iSizeList = [] readsList = [] #1. PLOT BUILDING histogram_template_len = self.mapping_stats.read_insert_size_histogram for insert_size_length,reads in histogram_template_len.items(): iSizeList.append(int(insert_size_length)) readsList.append(int(reads)) matplotlib.pyplot.ioff() figure = plt.figure() plt.plot(iSizeList, readsList, '.',color="r") plt.xlabel('Insert Size (bp)') plt.ylabel('Reads') plt.title('Insert Size Histogram') plt.axis([min(iSizeList), 800,min(readsList), max(readsList)]) plt.grid(True) pylab.savefig(self.png_insert_size_histogram) plt.close(figure)
Example #27
Source File: reportStats.py From gemBS with GNU General Public License v3.0 | 5 votes |
def drawMultipleInsertSizePlot(self): """ From matplot lib plots a Insert Size Plot """ iSizeList = [] readsList = [] readsYaxis = [] sizeXaxis = [] lanesNames = [] #1. PLOT BUILDING for laneStats in self.mapping_stats.list_lane_stats: lanesNames.append(laneStats.name) histogram_template_len = laneStats.read_insert_size_histogram sizeList = [] readList = [] for insert_size_length,reads in histogram_template_len.items(): sizeList.append(int(insert_size_length)) readList.append(int(reads)) readsYaxis.extend(readList) sizeXaxis.extend(sizeList) iSizeList.append(sizeList) readsList.append(readList) matplotlib.pyplot.ioff() figure = plt.figure() for iSize, readList in zip(iSizeList, readsList): plt.plot(iSize, readList,'.') plt.xlabel('Insert Size (bp)') plt.ylabel('Reads') plt.title('Insert Size Histogram Per Lane') plt.axis([min(sizeXaxis), 800,min(readsYaxis), max(readsYaxis)]) plt.legend(lanesNames,loc='upper right') plt.grid(True) pylab.savefig(self.png_insert_size_histogram) plt.close(figure)
Example #28
Source File: plotting_utils.py From nonparaSeq2seqVC_code with MIT License | 5 votes |
def plot_alignment(alignment, fn): # [4, encoder_step, decoder_step] fig, axes = plt.subplots(2, 2) for i in range(2): for j in range(2): g = axes[i][j].imshow(alignment[i*2+j,:,:].T, aspect='auto', origin='lower', interpolation='none') plt.colorbar(g, ax=axes[i][j]) plt.savefig(fn) plt.close() return fn
Example #29
Source File: reportStats.py From gemBS with GNU General Public License v3.0 | 5 votes |
def drawMultipleMapqHistogram(self): """ From matplot lib plots a Mappping qualty histogram """ mapqFragmentsLanes = [] for laneStats in self.mapping_stats.list_lane_stats: mapqFragmentsLanes.append(laneStats.mapping_quality_reads) matplotlib.pyplot.ioff() figure = plt.figure() ax = figure.add_subplot(111,projection='3d') lane = 0 for fragmentsQuality in mapqFragmentsLanes: qualityRange = list(range(len(fragmentsQuality))) ax.bar(qualityRange,fragmentsQuality, zs=lane, zdir='y', color='b', alpha=0.8) lane = lane + 1 ax.set_xlabel('MapQ') ax.set_ylabel('Lanes') ax.set_zlabel('Fragments') #http://people.duke.edu/~ccc14/pcfb/numpympl/MatplotlibBarPlots.html pylab.savefig(self.png_mapq_histogram) plt.close(figure)
Example #30
Source File: bsCallStats.py From gemBS with GNU General Public License v3.0 | 5 votes |
def saveAndClose(self): """Save the figure and close it""" pylab.savefig(self.pngFile) plt.close(self.figure)