Python matplotlib.pylab.subplot() Examples
The following are 30
code examples of matplotlib.pylab.subplot().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pylab
, or try the search function
.
Example #1
Source File: 07_dqn_distrib.py From Deep-Reinforcement-Learning-Hands-On with MIT License | 6 votes |
def save_transition_images(batch_size, predicted, projected, next_distr, dones, rewards, save_prefix): for batch_idx in range(batch_size): is_done = dones[batch_idx] reward = rewards[batch_idx] plt.clf() p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z) plt.subplot(3, 1, 1) plt.bar(p, predicted[batch_idx], width=0.5) plt.title("Predicted") plt.subplot(3, 1, 2) plt.bar(p, projected[batch_idx], width=0.5) plt.title("Projected") plt.subplot(3, 1, 3) plt.bar(p, next_distr[batch_idx], width=0.5) plt.title("Next state") suffix = "" if reward != 0.0: suffix = suffix + "_%.0f" % reward if is_done: suffix = suffix + "_done" plt.savefig("%s_%02d%s.png" % (save_prefix, batch_idx, suffix))
Example #2
Source File: dataset.py From Image-Restoration with MIT License | 6 votes |
def show_pred(images, predictions, ground_truth): # choose 10 indice from images and visualize them indice = [np.random.randint(0, len(images)) for i in range(40)] for i in range(0, 40): plt.figure() plt.subplot(1, 3, 1) plt.tight_layout() plt.title('deformed image') plt.imshow(images[indice[i]]) plt.subplot(1, 3, 2) plt.tight_layout() plt.title('predicted mask') plt.imshow(predictions[indice[i]]) plt.subplot(1, 3, 3) plt.tight_layout() plt.title('ground truth label') plt.imshow(ground_truth[indice[i]]) plt.show() # Load Data Science Bowl 2018 training dataset
Example #3
Source File: BirthMoveTopicModel.py From refinery with MIT License | 6 votes |
def viz_missing_docwordfreq_stats(DocWordFreq_emp, DocWordFreq_model): from matplotlib import pylab DocWordFreq_missing = np.maximum(DocWordFreq_emp - DocWordFreq_model, 0) nnzEmp = count_num_nonzero(DocWordFreq_emp) nnzMiss = count_num_nonzero(DocWordFreq_missing) frac_nzMiss = nnzMiss / float(nnzEmp) nzMissPerDoc = np.sum(DocWordFreq_missing > 0, axis=1) CDF_nzMissPerDoc = np.sort(nzMissPerDoc) nzMissPerWord = np.sum(DocWordFreq_missing > 0, axis=0) CDF_nzMissPerWord = np.sort(nzMissPerWord) pylab.subplot(1,2,1) pylab.plot(CDF_nzMissPerDoc) pylab.ylabel('Num Nonzero Entries in Doc') pylab.xlabel('Document rank | frac= %.4f'% (frac_nzMiss)) pylab.subplot(1,2,2) pylab.plot(CDF_nzMissPerWord) pylab.ylabel('Num Nonzero Entries per Word') pylab.xlabel('Word rank') pylab.show(block=True)
Example #4
Source File: mean_plotter.py From visual_dynamics with MIT License | 6 votes |
def __init__(self, fig, gs, label='mean', color='black', alpha=1.0, min_itr=10): self._fig = fig self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs) self._ax = plt.subplot(self._gs[0]) self._label = label self._color = color self._alpha = alpha self._min_itr = min_itr self._ts = np.empty((1, 0)) self._data_mean = np.empty((1, 0)) self._plots_mean = self._ax.plot([], [], '-x', markeredgewidth=1.0, color=self._color, alpha=1.0, label=self._label)[0] self._ax.set_xlim(0-0.5, self._min_itr+0.5) self._ax.set_ylim(0, 1) self._ax.minorticks_on() self._ax.legend(loc='upper right', bbox_to_anchor=(1, 1)) self._init = False self._fig.canvas.draw() self._fig.canvas.flush_events() # Fixes bug with Qt4Agg backend
Example #5
Source File: loss_plotter.py From visual_dynamics with MIT License | 6 votes |
def __init__(self, fig, gs, format_strings=None, format_dicts=None, labels=None, xlabel=None, ylabel=None, yscale='linear'): self._fig = fig self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs) self._ax = plt.subplot(self._gs[0]) self._labels = labels or [] self._format_strings = format_strings or [] self._format_dicts = format_dicts or [] self._ax.set_xlabel(xlabel or 'iteration') self._ax.set_ylabel(ylabel or 'loss') self._ax.set_yscale(yscale or 'linear') self._ax.minorticks_on() self._plots = [] self._fig.canvas.draw() self._fig.canvas.flush_events() # Fixes bug with Qt4Agg backend
Example #6
Source File: arrow_plotter.py From visual_dynamics with MIT License | 6 votes |
def __init__(self, fig, gs, labels=None, limits=None): self._fig = fig self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs) self._ax = plt.subplot(self._gs[0]) self._arrow = None if labels: if len(labels) == 2: self._ax.set_xlabel(labels[0]) self._ax.set_ylabel(labels[1]) else: raise ValueError("invalid labels %r" % labels) if limits: if len(limits) == 2 and \ len(limits[0]) == 2 and \ len(limits[1]) == 2: self._ax.set_xlim([limits[0][0], limits[1][0]]) self._ax.set_ylim([limits[0][1], limits[1][1]]) else: raise ValueError("invalid limits %r" % limits) self._fig.canvas.draw() self._fig.canvas.flush_events() # Fixes bug with Qt4Agg backend
Example #7
Source File: demo_ui.py From spriteworld with Apache License 2.0 | 6 votes |
def __init__(self): self.rewards = 10 * [np.nan] self.rewards_bounds = [-10, 10] self.last_success = None plt.ion() self._fig = plt.figure( figsize=(9, 12), num='Spriteworld', facecolor='white') gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) self._ax_image = plt.subplot(gs[0]) self._ax_image.axis('off') self._ax_scalar = plt.subplot(gs[1]) self._ax_scalar.spines['right'].set_visible(False) self._ax_scalar.spines['top'].set_visible(False) self._ax_scalar.xaxis.set_ticks_position('bottom') self._ax_scalar.yaxis.set_ticks_position('left') self._setup_callbacks()
Example #8
Source File: 07_dqn_distrib.py From Deep-Reinforcement-Learning-Hands-On with MIT License | 6 votes |
def save_state_images(frame_idx, states, net, device="cpu", max_states=200): ofs = 0 p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z) for batch in np.array_split(states, 64): states_v = torch.tensor(batch).to(device) action_prob = net.apply_softmax(net(states_v)).data.cpu().numpy() batch_size, num_actions, _ = action_prob.shape for batch_idx in range(batch_size): plt.clf() for action_idx in range(num_actions): plt.subplot(num_actions, 1, action_idx+1) plt.bar(p, action_prob[batch_idx, action_idx], width=0.5) plt.savefig("states/%05d_%08d.png" % (ofs + batch_idx, frame_idx)) ofs += batch_size if ofs >= max_states: break
Example #9
Source File: plotlib.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def plotVtecAndJasonTracks(gtcFiles, outFile=None, names=None, makeFigure=True, show=False, **options): """Plot GAIM climate and assim VTEC versus JASON using at least two 'gc' files. First file is usually climate file, and rest are assim files. """ ensureItems(options, {'title': 'GAIM vs. JASON for '+gtcFiles[0], \ 'xlabel': 'Geographic Latitude (deg)', 'ylabel': 'VTEC (TECU)'}) if 'show' in options: show = True del options['show'] M.subplot(211) gtcFile = gtcFiles.pop(0) name = 'clim_' if names: name = names.pop(0) specs = [(gtcFile, 'latitude:2,jason:6,gim__:8,%s:13,iri__:10' % name)] name = 'assim' for i, gtcFile in enumerate(gtcFiles): label = name if len(gtcFiles) > 1: label += str(i+1) specs.append( (gtcFile, 'latitude:2,%s:13' % label) ) plotColumns(specs, rmsDiffFrom='jason', floatFormat='%5.1f', **options) M.legend() M.subplot(212) options.update({'title': 'JASON Track Plot', 'xlabel': 'Longitude (deg)', 'ylabel': 'Latitude (deg)'}) fields = N.array([map(floatOrMiss, line.split()) for line in open(gtcFiles[0], 'r')]) lons = fields[:,2]; lats = fields[:,1] marksOnMap(lons, lats, show=show, **options) if outFile: M.savefig(outFile)
Example #10
Source File: DeadLeaves.py From refinery with MIT License | 5 votes |
def plotTrueCovMats(doShowNow=True): from matplotlib import pylab pylab.figure() for kk in range(K): pylab.subplot(2, 4, kk+1) pylab.imshow(Sigma[kk], interpolation='nearest') if doShowNow: pylab.show()
Example #11
Source File: BarsViz.py From refinery with MIT License | 5 votes |
def plotExampleBarsDocs(Data, docIDsToPlot=None, vmax=None, nDocToPlot=9, doShowNow=True): pylab.figure() V = Data.vocab_size sqrtV = int(np.sqrt(V)) assert np.allclose(sqrtV * sqrtV, V) if docIDsToPlot is not None: nDocToPlot = len(docIDsToPlot) else: docIDsToPlot = np.random.choice(Data.nDoc, size=nDocToPlot, replace=False) nRows = np.floor(np.sqrt(nDocToPlot)) nCols = np.ceil(nDocToPlot / nRows) if vmax is None: DocWordArr = Data.to_sparse_docword_matrix().toarray() vmax = int(np.max(np.percentile(DocWordArr, 98, axis=0))) for plotPos, docID in enumerate(docIDsToPlot): # Parse current document start,stop = Data.doc_range[docID,:] wIDs = Data.word_id[start:stop] wCts = Data.word_count[start:stop] docWordHist = np.zeros(V) docWordHist[wIDs] = wCts squareIm = np.reshape(docWordHist, (np.sqrt(V), np.sqrt(V))) pylab.subplot(nRows, nCols, plotPos) pylab.imshow(squareIm, interpolation='nearest', vmin=0, vmax=vmax) if doShowNow: pylab.show()
Example #12
Source File: dataset.py From UNet-pytorch with MIT License | 5 votes |
def show_batch(sample_batched): """Show image with landmarks for a batch of samples.""" images_batch, masks_batch = sample_batched['image'].numpy().astype(np.uint8), sample_batched['mask'].numpy().astype(np.bool) batch_size = len(images_batch) for i in range(batch_size): plt.figure() plt.subplot(1, 2, 1) plt.tight_layout() plt.imshow(images_batch[i].transpose((1, 2, 0))) plt.subplot(1, 2, 2) plt.tight_layout() plt.imshow(np.squeeze(masks_batch[i].transpose((1, 2, 0)))) # Load Data Science Bowl 2018 training dataset
Example #13
Source File: OldMergeMove.py From refinery with MIT License | 5 votes |
def viz_merge_proposal(curModel, propModel, kA, kB, curEv, propEv): ''' Visualize merge proposal (in 2D) ''' from ..viz import GaussViz, BarsViz from matplotlib import pylab fig = pylab.figure() h1 = pylab.subplot(1,2,1) if curModel.obsModel.__class__.__name__.count('Gauss'): GaussViz.plotGauss2DFromHModel(curModel, compsToHighlight=[kA, kB]) else: BarsViz.plotBarsFromHModel(curModel, compsToHighlight=[kA, kB], figH=h1) pylab.title( 'Before Merge' ) pylab.xlabel( 'ELBO= %.2e' % (curEv) ) h2 = pylab.subplot(1,2,2) if curModel.obsModel.__class__.__name__.count('Gauss'): GaussViz.plotGauss2DFromHModel(propModel, compsToHighlight=[kA]) else: BarsViz.plotBarsFromHModel(propModel, compsToHighlight=[kA], figH=h2) pylab.title( 'After Merge' ) pylab.xlabel( 'ELBO= %.2e \n %d' % (propEv, propEv > curEv)) pylab.show(block=False) try: x = raw_input('Press any key to continue / Ctrl-C to quit >>') except KeyboardInterrupt: import sys sys.exit(-1) pylab.close()
Example #14
Source File: make_dataset.py From DeepLearningImplementations with MIT License | 5 votes |
def check_HDF5(size=64): """ Plot images with landmarks to check the processing """ # Get hdf5 file hdf5_file = os.path.join(data_dir, "CelebA_%s_data.h5" % size) with h5py.File(hdf5_file, "r") as hf: data_color = hf["training_color_data"] data_lab = hf["training_lab_data"] data_black = hf["training_black_data"] for i in range(data_color.shape[0]): fig = plt.figure() gs = gridspec.GridSpec(3, 1) for k in range(3): ax = plt.subplot(gs[k]) if k == 0: img = data_color[i, :, :, :].transpose(1,2,0) ax.imshow(img) elif k == 1: img = data_lab[i, :, :, :].transpose(1,2,0) img = color.lab2rgb(img) ax.imshow(img) elif k == 2: img = data_black[i, 0, :, :] / 255. ax.imshow(img, cmap="gray") gs.tight_layout(fig) plt.show() plt.clf() plt.close()
Example #15
Source File: BirthMoveTopicModel.py From refinery with MIT License | 5 votes |
def viz_docwordfreq_sidebyside(P1, P2, title1='', title2='', vmax=None, aspect=None, block=False): from matplotlib import pylab pylab.figure() if vmax is None: vmax = 1.0 P1limit = np.percentile(P1.flatten(), 97) if P2 is not None: P2limit = np.percentile(P2.flatten(), 97) else: P2limit = P1limit while vmax > P1limit and vmax > P2limit: vmax = 0.8 * vmax if aspect is None: aspect = float(P1.shape[1])/P1.shape[0] pylab.subplot(1, 2, 1) pylab.imshow(P1, aspect=aspect, interpolation='nearest', vmin=0, vmax=vmax) if len(title1) > 0: pylab.title(title1) if P2 is not None: pylab.subplot(1, 2, 2) pylab.imshow(P2, aspect=aspect, interpolation='nearest', vmin=0, vmax=vmax) if len(title2) > 0: pylab.title(title2) pylab.show(block=block)
Example #16
Source File: BirthMove.py From refinery with MIT License | 5 votes |
def viz_birth_proposal_2D(curModel, newModel, ktarget, freshCompIDs, title1='Before Birth', title2='After Birth'): ''' Create before/after visualization of a birth move (in 2D) ''' from ..viz import GaussViz, BarsViz from matplotlib import pylab fig = pylab.figure() h1 = pylab.subplot(1,2,1) if curModel.obsModel.__class__.__name__.count('Gauss'): GaussViz.plotGauss2DFromHModel(curModel, compsToHighlight=ktarget) else: BarsViz.plotBarsFromHModel(curModel, compsToHighlight=ktarget, figH=h1) pylab.title(title1) h2 = pylab.subplot(1,2,2) if curModel.obsModel.__class__.__name__.count('Gauss'): GaussViz.plotGauss2DFromHModel(newModel, compsToHighlight=freshCompIDs) else: BarsViz.plotBarsFromHModel(newModel, compsToHighlight=freshCompIDs, figH=h2) pylab.title(title2) pylab.show(block=False) try: x = raw_input('Press any key to continue >>') except KeyboardInterrupt: import sys sys.exit(-1) pylab.close()
Example #17
Source File: MergeMove.py From refinery with MIT License | 5 votes |
def viz_merge_proposal(curModel, propModel, kA, kB, curEv, propEv): ''' Visualize merge proposal (in 2D) ''' from ..viz import GaussViz, BarsViz from matplotlib import pylab fig = pylab.figure() h1 = pylab.subplot(1,2,1) if curModel.obsModel.__class__.__name__.count('Gauss'): GaussViz.plotGauss2DFromHModel(curModel, compsToHighlight=[kA, kB]) else: BarsViz.plotBarsFromHModel(curModel, compsToHighlight=[kA, kB], figH=h1) pylab.title( 'Before Merge' ) pylab.xlabel( 'ELBO= %.2e' % (curEv) ) h2 = pylab.subplot(1,2,2) if curModel.obsModel.__class__.__name__.count('Gauss'): GaussViz.plotGauss2DFromHModel(propModel, compsToHighlight=[kA]) else: BarsViz.plotBarsFromHModel(propModel, compsToHighlight=[kA], figH=h2) pylab.title( 'After Merge' ) pylab.xlabel( 'ELBO= %.2e \n %d' % (propEv, propEv > curEv)) pylab.show(block=False) try: x = raw_input('Press any key to continue / Ctrl-C to quit >>') except KeyboardInterrupt: import sys sys.exit(-1) pylab.close()
Example #18
Source File: DeadLeaves.py From refinery with MIT License | 5 votes |
def plotTrueCovMats(doShowNow=True): from matplotlib import pylab pylab.figure() for kk in range(K): pylab.subplot(2, 4, kk+1) pylab.imshow(Sigma[kk], interpolation='nearest') if doShowNow: pylab.show()
Example #19
Source File: DeadLeaves.py From refinery with MIT License | 5 votes |
def plotImgPatchPrototypes(doShowNow=True): from matplotlib import pylab pylab.figure() for kk in range(K): pylab.subplot(2, 4, kk+1) Xp = makeImgPatchPrototype(D, kk) pylab.imshow(Xp, interpolation='nearest') if doShowNow: pylab.show()
Example #20
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 5 votes |
def plot_feat_hist(data_name_list, filename=None): pylab.clf() num_rows = 1 + (len(data_name_list) - 1) / 2 num_cols = 1 if len(data_name_list) == 1 else 2 pylab.figure(figsize=(5 * num_cols, 4 * num_rows)) for i in range(num_rows): for j in range(num_cols): pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j) x, name = data_name_list[i * num_cols + j] pylab.title(name) pylab.xlabel('Value') pylab.ylabel('Density') # the histogram of the data max_val = np.max(x) if max_val <= 1.0: bins = 50 elif max_val > 50: bins = 50 else: bins = max_val n, bins, patches = pylab.hist( x, bins=bins, normed=1, facecolor='green', alpha=0.75) pylab.grid(True) if not filename: filename = "feat_hist_%s.png" % name pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
Example #21
Source File: getFoodContourNN.py From tierpsy-tracker with MIT License | 5 votes |
def get_food_prob(mask_file, model, max_bgnd_images = 2, _is_debug = False, resizing_size = DFLT_RESIZING_SIZE): ''' Predict the food probability for each pixel using a pretrained u-net model. ''' with tables.File(mask_file, 'r') as fid: if not '/full_data' in fid: raise ValueError('The mask file {} does not content the /full_data dataset.'.format(mask_file)) bgnd_o = fid.get_node('/full_data')[:max_bgnd_images] assert bgnd_o.ndim == 3 if bgnd_o.shape[0] > 1: bgnd = [np.max(bgnd_o[i:i+1], axis=0) for i in range(bgnd_o.shape[0]-1)] else: bgnd = [np.squeeze(bgnd_o)] min_size = min(bgnd[0].shape) resize_factor = min(resizing_size, min_size)/min_size dsize = tuple(int(x*resize_factor) for x in bgnd[0].shape[::-1]) bgnd_s = [cv2.resize(x, dsize) for x in bgnd] for b_img in bgnd_s: Y_pred = get_unet_prediction(b_img, model, n_flips=1) if _is_debug: import matplotlib.pylab as plt plt.figure() plt.subplot(1,2,1) plt.imshow(b_img, cmap='gray') plt.subplot(1, 2,2) plt.imshow(Y_pred, interpolation='none') original_size = bgnd[0].shape return Y_pred, original_size, bgnd_s
Example #22
Source File: io_methods.py From signaltrain with GNU General Public License v3.0 | 5 votes |
def plot_valdata(x_val_cuda, knobs_val_cuda, y_val_cuda, y_val_hat_cuda, effect, \ epoch, loss_val, file_prefix='val_data', num_plots=50, target_size=None): x_size = len(x_val_cuda.data.cpu().numpy()[0]) if target_size is None: y_size = len(y_val_cuda.data.cpu().numpy()[0]) else: y_size = target_size t_small = range(x_size-y_size, x_size) for plot_i in range(0, num_plots): x_val = x_val_cuda.data.cpu().numpy() knobs_w = effect.knobs_wc( knobs_val_cuda.data.cpu().numpy()[plot_i,:] ) plt.figure(plot_i,figsize=(6,8)) titlestr = f'{effect.name} Val data, epoch {epoch+1}, loss_val = {loss_val.item():.3e}\n' for i in range(len(effect.knob_names)): titlestr += f'{effect.knob_names[i]} = {knobs_w[i]:.2f}' if i < len(effect.knob_names)-1: titlestr += ', ' plt.suptitle(titlestr) plt.subplot(3, 1, 1) plt.plot(x_val[plot_i, :], 'b', label='Input') plt.ylim(-1,1) plt.xlim(0,x_size) plt.legend() plt.subplot(3, 1, 2) y_val = y_val_cuda.data.cpu().numpy() plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target') plt.xlim(0,x_size) plt.ylim(-1,1) plt.legend() plt.subplot(3, 1, 3) plt.plot(t_small, y_val[plot_i, -y_size:], 'r', label='Target') y_val_hat = y_val_hat_cuda.data.cpu().numpy() plt.plot(t_small, y_val_hat[plot_i, -y_size:], c=(0,0.5,0,0.85), label='Predicted') plt.ylim(-1,1) plt.xlim(0,x_size) plt.legend() filename = file_prefix + '_' + str(plot_i) + '.png' savefig(filename) return
Example #23
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 5 votes |
def plot_feat_hist(data_name_list, filename=None): pylab.clf() num_rows = 1 + (len(data_name_list) - 1) / 2 num_cols = 1 if len(data_name_list) == 1 else 2 pylab.figure(figsize=(5 * num_cols, 4 * num_rows)) for i in range(num_rows): for j in range(num_cols): pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j) x, name = data_name_list[i * num_cols + j] pylab.title(name) pylab.xlabel('Value') pylab.ylabel('Density') # the histogram of the data max_val = np.max(x) if max_val <= 1.0: bins = 50 elif max_val > 50: bins = 50 else: bins = max_val n, bins, patches = pylab.hist( x, bins=bins, normed=1, facecolor='green', alpha=0.75) pylab.grid(True) if not filename: filename = "feat_hist_%s.png" % name pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
Example #24
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 5 votes |
def plot_feat_hist(data_name_list, filename=None): if len(data_name_list) > 1: assert filename is not None pylab.figure(num=None, figsize=(8, 6)) num_rows = int(1 + (len(data_name_list) - 1) / 2) num_cols = int(1 if len(data_name_list) == 1 else 2) pylab.figure(figsize=(5 * num_cols, 4 * num_rows)) for i in range(num_rows): for j in range(num_cols): pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j) x, name = data_name_list[i * num_cols + j] pylab.title(name) pylab.xlabel('Value') pylab.ylabel('Fraction') # the histogram of the data max_val = np.max(x) if max_val <= 1.0: bins = 50 elif max_val > 50: bins = 50 else: bins = max_val n, bins, patches = pylab.hist( x, bins=bins, normed=1, alpha=0.75) pylab.grid(True) if not filename: filename = "feat_hist_%s.png" % name.replace(" ", "_") pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
Example #25
Source File: plot.py From POT with MIT License | 5 votes |
def plot1D_mat(a, b, M, title=''): """ Plot matrix M with the source and target 1D distribution Creates a subplot with the source distribution a on the left and target distribution b on the tot. The matrix M is shown in between. Parameters ---------- a : ndarray, shape (na,) Source distribution b : ndarray, shape (nb,) Target distribution M : ndarray, shape (na, nb) Matrix to plot """ na, nb = M.shape gs = gridspec.GridSpec(3, 3) xa = np.arange(na) xb = np.arange(nb) ax1 = pl.subplot(gs[0, 1:]) pl.plot(xb, b, 'r', label='Target distribution') pl.yticks(()) pl.title(title) ax2 = pl.subplot(gs[1:, 0]) pl.plot(a, xa, 'b', label='Source distribution') pl.gca().invert_xaxis() pl.gca().invert_yaxis() pl.xticks(()) pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2) pl.imshow(M, interpolation='nearest') pl.axis('off') pl.xlim((0, nb)) pl.tight_layout() pl.subplots_adjust(wspace=0., hspace=0.2)
Example #26
Source File: plotter_3d.py From visual_dynamics with MIT License | 5 votes |
def __init__(self, fig, gs, num_plots, rows=None, cols=None): if cols is None: cols = int(np.floor(np.sqrt(num_plots))) if rows is None: rows = int(np.ceil(float(num_plots)/cols)) assert num_plots <= rows*cols, 'Too many plots to put into gridspec.' self._fig = fig self._gs = gridspec.GridSpecFromSubplotSpec(8, 1, subplot_spec=gs) self._gs_legend = self._gs[0:1, 0] self._gs_plot = self._gs[1:8, 0] self._ax_legend = plt.subplot(self._gs_legend) self._ax_legend.get_xaxis().set_visible(False) self._ax_legend.get_yaxis().set_visible(False) self._gs_plots = gridspec.GridSpecFromSubplotSpec(rows, cols, subplot_spec=self._gs_plot) self._axarr = [plt.subplot(self._gs_plots[i], projection='3d') for i in range(num_plots)] self._lims = [None for i in range(num_plots)] self._plots = [[] for i in range(num_plots)] for ax in self._axarr: ax.tick_params(pad=0) ax.locator_params(nbins=5) for item in (ax.get_xticklabels() + ax.get_yticklabels() + ax.get_zticklabels()): item.set_fontsize(10) self._fig.canvas.draw() self._fig.canvas.flush_events() # Fixes bug with Qt4Agg backend
Example #27
Source File: realtime_plotter.py From visual_dynamics with MIT License | 5 votes |
def __init__(self, fig, gs, time_window=500, labels=None, alphas=None): self._fig = fig self._gs = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs) self._ax = plt.subplot(self._gs[0]) self._time_window = time_window self._labels = labels self._alphas = alphas self._init = False if self._labels: self.init(len(self._labels)) self._fig.canvas.draw() self._fig.canvas.flush_events() # Fixes bug with Qt4Agg backend
Example #28
Source File: dds_parallel_plot.py From spotpy with MIT License | 5 votes |
def subplot(data, name, ylabel): fig = plt.figure(figsize=(20, 6)) ax = plt.subplot(111) rep_labels = [str(j) for j in reps] x_pos = [i for i, _ in enumerate(rep_labels)] X = np.arange(len(data)) ax_plot = ax.bar(x_pos, data, color=color_map(data_normalizer(data)), width=0.45) plt.xticks(x_pos, rep_labels) plt.xlabel("Repetitions") plt.ylabel(ylabel) autolabel(ax, ax_plot) plt.savefig(name + ".png")
Example #29
Source File: time_alignment_plotting_tools.py From hand_eye_calibration with BSD 3-Clause "New" or "Revised" License | 5 votes |
def plot_angular_velocities(title, angular_velocities, angular_velocities_filtered, block=True): fig = plt.figure() title_position = 1.05 fig.suptitle(title, fontsize='24') a1 = plt.subplot(1, 2, 1) a1.set_title( "Angular Velocities Before Filtering \nvx [red], vy [green], vz [blue]", y=title_position) plt.plot(angular_velocities[:, 0], c='r') plt.plot(angular_velocities[:, 1], c='g') plt.plot(angular_velocities[:, 2], c='b') a2 = plt.subplot(1, 2, 2) a2.set_title( "Angular Velocities After Filtering \nvx [red], vy [green], vz [blue]", y=title_position) plt.plot(angular_velocities_filtered[:, 0], c='r') plt.plot(angular_velocities_filtered[:, 1], c='g') plt.plot(angular_velocities_filtered[:, 2], c='b') plt.subplots_adjust(left=0.025, right=0.975, top=0.8, bottom=0.05) if plt.get_backend() == 'TkAgg': mng = plt.get_current_fig_manager() max_size = mng.window.maxsize() max_size = (max_size[0], max_size[1] * 0.45) mng.resize(*max_size) plt.show(block=block)
Example #30
Source File: dataset.py From Image-Restoration with MIT License | 5 votes |
def show_batch(sample_batched): """Show image with landmarks for a batch of samples.""" images_batch, masks_batch = sample_batched['image'].numpy().astype(np.uint8), sample_batched['mask'].numpy().astype(np.bool) batch_size = len(images_batch) for i in range(batch_size): plt.figure() plt.subplot(1, 2, 1) plt.tight_layout() plt.imshow(images_batch[i].transpose((1, 2, 0))) plt.subplot(1, 2, 2) plt.tight_layout() plt.imshow(np.squeeze(masks_batch[i].transpose((1, 2, 0))))