Python matplotlib.pylab.title() Examples
The following are 30
code examples of matplotlib.pylab.title().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pylab
, or try the search function
.
Example #1
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_roc(auc_score, name, tpr, fpr, label=None): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) pylab.grid(True) pylab.plot([0, 1], [0, 1], 'k--') pylab.plot(fpr, tpr) pylab.fill_between(fpr, tpr, alpha=0.5) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('False Positive Rate') pylab.ylabel('True Positive Rate') pylab.title('ROC curve (AUC = %0.2f) / %s' % (auc_score, label), verticalalignment="bottom") pylab.legend(loc="lower right") filename = name.replace(" ", "_") pylab.savefig( os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
Example #2
Source File: plot_kmeans_example.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None): pylab.figure(num=None, figsize=(8, 6)) if km: pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y)))) else: pylab.scatter(x, y, s=50) pylab.title(title) pylab.xlabel("Occurrence word 1") pylab.ylabel("Occurrence word 2") pylab.autoscale(tight=True) pylab.ylim(ymin=0, ymax=1) pylab.xlim(xmin=0, xmax=1) pylab.grid(True, linestyle='-', color='0.75') return pylab
Example #3
Source File: testfuncs.py From Computable with MIT License | 6 votes |
def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.func_name) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.func_name) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.func_name) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.func_name) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.func_name) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.func_name) pl.ion()
Example #4
Source File: demo_mi.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_entropy(): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) title = "Entropy $H(X)$" pylab.title(title) pylab.xlabel("$P(X=$coin will show heads up$)$") pylab.ylabel("$H(X)$") pylab.xlim(xmin=0, xmax=1.1) x = np.arange(0.001, 1, 0.001) y = -x * np.log2(x) - (1 - x) * np.log2(1 - x) pylab.plot(x, y) # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in # [0,1,2,3,4]]) pylab.autoscale(tight=True) pylab.grid(True) filename = "entropy_demo.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
Example #5
Source File: kNN.py From statistical-learning-methods-note with Apache License 2.0 | 6 votes |
def plotKChart(self, misClassDict, saveFigPath): kList = [] misRateList = [] for k, misClassNum in misClassDict.iteritems(): kList.append(k) misRateList.append(1.0 - 1.0/k*misClassNum) fig = plt.figure(saveFigPath) plt.plot(kList, misRateList, 'r--') plt.title(saveFigPath) plt.xlabel('k Num.') plt.ylabel('Misclassified Rate') plt.legend(saveFigPath) plt.grid(True) plt.savefig(saveFigPath) plt.show() ################################### PART3 TEST ######################################## # 例子
Example #6
Source File: utils.py From ndvr-dml with Apache License 2.0 | 6 votes |
def plot_pr_curve(pr_curve_dml, pr_curve_base, title): """ Function that plots the PR-curve. Args: pr_curve: the values of precision for each recall value title: the title of the plot """ plt.figure(figsize=(16, 9)) plt.plot(np.arange(0.0, 1.05, 0.05), pr_curve_base, color='r', marker='o', linewidth=3, markersize=10) plt.plot(np.arange(0.0, 1.05, 0.05), pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10) plt.grid(True, linestyle='dotted') plt.xlabel('Recall', color='k', fontsize=27) plt.ylabel('Precision', color='k', fontsize=27) plt.yticks(color='k', fontsize=20) plt.xticks(color='k', fontsize=20) plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title(title, color='k', fontsize=27) plt.tight_layout() plt.show()
Example #7
Source File: dataset.py From Image-Restoration with MIT License | 6 votes |
def show_pred(images, predictions, ground_truth): # choose 10 indice from images and visualize them indice = [np.random.randint(0, len(images)) for i in range(40)] for i in range(0, 40): plt.figure() plt.subplot(1, 3, 1) plt.tight_layout() plt.title('deformed image') plt.imshow(images[indice[i]]) plt.subplot(1, 3, 2) plt.tight_layout() plt.title('predicted mask') plt.imshow(predictions[indice[i]]) plt.subplot(1, 3, 3) plt.tight_layout() plt.title('ground truth label') plt.imshow(ground_truth[indice[i]]) plt.show() # Load Data Science Bowl 2018 training dataset
Example #8
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_confusion_matrix(cm, genre_list, name, title): pylab.clf() pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0) ax = pylab.axes() ax.set_xticks(range(len(genre_list))) ax.set_xticklabels(genre_list) ax.xaxis.set_ticks_position("bottom") ax.set_yticks(range(len(genre_list))) ax.set_yticklabels(genre_list) pylab.title(title) pylab.colorbar() pylab.grid(False) pylab.show() pylab.xlabel('Predicted class') pylab.ylabel('True class') pylab.grid(False) pylab.savefig( os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
Example #9
Source File: evaluate.py From text-classifier with Apache License 2.0 | 6 votes |
def plot_pr(auc_score, precision, recall, label=None, figure_path=None): """绘制R/P曲线""" try: from matplotlib import pylab pylab.figure(num=None, figsize=(6, 5)) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('Recall') pylab.ylabel('Precision') pylab.title('P/R (AUC=%0.2f) / %s' % (auc_score, label)) pylab.fill_between(recall, precision, alpha=0.5) pylab.grid(True, linestyle='-', color='0.75') pylab.plot(recall, precision, lw=1) pylab.savefig(figure_path) except Exception as e: print("save image error with matplotlib") pass
Example #10
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_feat_importance(feature_names, clf, name): pylab.clf() coef_ = clf.coef_ important = np.argsort(np.absolute(coef_.ravel())) f_imp = feature_names[important] coef = coef_.ravel()[important] inds = np.argsort(coef) f_imp = f_imp[inds] coef = coef[inds] xpos = np.array(range(len(coef))) pylab.bar(xpos, coef, width=1) pylab.title('Feature importance for %s' % (name)) ax = pylab.gca() ax.set_xticks(np.arange(len(coef))) labels = ax.set_xticklabels(f_imp) for label in labels: label.set_rotation(90) filename = name.replace(" ", "_") pylab.savefig(os.path.join( CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
Example #11
Source File: mediator_utils.py From whynot with MIT License | 6 votes |
def error_bar_plot(experiment_data, results, title="", ylabel=""): true_effect = experiment_data.true_effects.mean() estimators = list(results.keys()) x = list(estimators) y = [results[estimator].ate for estimator in estimators] cis = [ np.array(results[estimator].ci) - results[estimator].ate if results[estimator].ci is not None else [0, 0] for estimator in estimators ] err = [[abs(ci[0]) for ci in cis], [abs(ci[1]) for ci in cis]] plt.figure(figsize=(12, 5)) (_, caps, _) = plt.errorbar(x, y, yerr=err, fmt="o", markersize=8, capsize=5) for cap in caps: cap.set_markeredgewidth(2) plt.plot(x, [true_effect] * len(x), label="True Effect") plt.legend(fontsize=12, loc="lower right") plt.ylabel(ylabel) plt.title(title)
Example #12
Source File: efficient_frontier.py From FinQuant with MIT License | 6 votes |
def plot_efrontier(self): """Plots the Efficient Frontier.""" if self.efrontier is None: # compute efficient frontier first self.efficient_frontier() plt.plot( self.efrontier[:, 0], self.efrontier[:, 1], linestyle="-.", color="black", lw=2, label="Efficient Frontier", ) plt.title("Efficient Frontier") plt.xlabel("Volatility") plt.ylabel("Expected Return") plt.legend()
Example #13
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_feat_importance(feature_names, clf, name): pylab.clf() coef_ = clf.coef_ important = np.argsort(np.absolute(coef_.ravel())) f_imp = feature_names[important] coef = coef_.ravel()[important] inds = np.argsort(coef) f_imp = f_imp[inds] coef = coef[inds] xpos = np.array(range(len(coef))) pylab.bar(xpos, coef, width=1) pylab.title('Feature importance for %s' % (name)) ax = pylab.gca() ax.set_xticks(np.arange(len(coef))) labels = ax.set_xticklabels(f_imp) for label in labels: label.set_rotation(90) filename = name.replace(" ", "_") pylab.savefig(os.path.join( CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight")
Example #14
Source File: testfuncs.py From neural-network-animation with MIT License | 6 votes |
def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.__name__) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.__name__) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.__name__) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.__name__) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.__name__) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.__name__) pl.ion()
Example #15
Source File: testfuncs.py From matplotlib-4-abaqus with MIT License | 6 votes |
def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.func_name) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.func_name) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.func_name) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.func_name) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.func_name) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.func_name) pl.ion()
Example #16
Source File: testfuncs.py From ImageFusion with MIT License | 6 votes |
def plotallfuncs(allfuncs=allfuncs): from matplotlib import pylab as pl pl.ioff() nnt = NNTester(npoints=1000) lpt = LinearTester(npoints=1000) for func in allfuncs: print(func.title) nnt.plot(func, interp=False, plotter='imshow') pl.savefig('%s-ref-img.png' % func.__name__) nnt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-nn-img.png' % func.__name__) lpt.plot(func, interp=True, plotter='imshow') pl.savefig('%s-lin-img.png' % func.__name__) nnt.plot(func, interp=False, plotter='contour') pl.savefig('%s-ref-con.png' % func.__name__) nnt.plot(func, interp=True, plotter='contour') pl.savefig('%s-nn-con.png' % func.__name__) lpt.plot(func, interp=True, plotter='contour') pl.savefig('%s-lin-con.png' % func.__name__) pl.ion()
Example #17
Source File: ClimatologySpark2.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def contourMap(var, variable, coordinates, n, plotFile): '''Make contour plot for the var array using coordinates vector for lat/lon coordinates.''' # TODO: Downscale variable array (SST) before contouring, matplotlib is TOO slow on large arrays # Fixed color scale, write file, turn off auto borders, set title, etc. lats = coordinates[0][:] lons = coordinates[1][:] if lats[1] < lats[0]: # if latitudes decreasing, reverse lats = N.flipud(lats) var = N.flipud(var[:]) imageMap(lons, lats, var, vmin=-2., vmax=45., outFile=plotFile, autoBorders=False, title='%s %d-day Mean from %s' % (variable.upper(), n, os.path.splitext(plotFile)[0])) print >> sys.stderr, 'Writing contour plot to %s' % plotFile return plotFile
Example #18
Source File: kernridgeregress_class.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def example1(): m,k = 500,4 upper = 6 scale=10 xs1a = np.linspace(1,upper,m)[:,np.newaxis] xs1 = xs1a*np.ones((1,4)) + 1/(1.0+np.exp(np.random.randn(m,k))) xs1 /= np.std(xs1[::k,:],0) # normalize scale, could use cov to normalize y1true = np.sum(np.sin(xs1)+np.sqrt(xs1),1)[:,np.newaxis] y1 = y1true + 0.250 * np.random.randn(m,1) stride = 2 #use only some points as trainig points e.g 2 means every 2nd gp1 = GaussProcess(xs1[::stride,:],y1[::stride,:], kernel=kernel_euclid, ridgecoeff=1e-10) yhatr1 = gp1.predict(xs1) plt.figure() plt.plot(y1true, y1,'bo',y1true, yhatr1,'r.') plt.title('euclid kernel: true y versus noisy y and estimated y') plt.figure() plt.plot(y1,'bo-',y1true,'go-',yhatr1,'r.-') plt.title('euclid kernel: true (green), noisy (blue) and estimated (red) '+ 'observations') gp2 = GaussProcess(xs1[::stride,:],y1[::stride,:], kernel=kernel_rbf, scale=scale, ridgecoeff=1e-1) yhatr2 = gp2.predict(xs1) plt.figure() plt.plot(y1true, y1,'bo',y1true, yhatr2,'r.') plt.title('rbf kernel: true versus noisy (blue) and estimated (red) observations') plt.figure() plt.plot(y1,'bo-',y1true,'go-',yhatr2,'r.-') plt.title('rbf kernel: true (green), noisy (blue) and estimated (red) '+ 'observations') #gp2.plot(y1)
Example #19
Source File: ClimatologySpark2.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def histogram(vals, variable, n, outFile): figFile = os.path.splitext(outFile)[0] + '_hist.png' M.clf() # M.hist(vals, 47, (-2., 45.)) M.hist(vals, 94) M.xlim(-5, 45) M.xlabel('SST in degrees Celsius') M.ylim(0, 300000) M.ylabel('Count') M.title('Histogram of %s %d-day Mean from %s' % (variable.upper(), n, outFile)) M.show() print >> sys.stderr, 'Writing histogram plot to %s' % figFile M.savefig(figFile) return figFile
Example #20
Source File: plotlib.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def plotTllv(inFile, markerType='kx', outFile=None, groupBy=None, **options): """Plot the lat/lon locations of points from a time/lat/lon/value file.""" fields = N.array([map(float, line.split()) for line in open(inFile, 'r')]) lons = fields[:,2]; lats = fields[:,1] marksOnMap(lons, lats, markerType, outFile, \ title='Lat/lon plot of '+inFile, **options)
Example #21
Source File: ClimatologySpark.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def histogram(vals, variable, n, outFile): figFile = os.path.splitext(outFile)[0] + '_hist.png' M.clf() # M.hist(vals, 47, (-2., 45.)) M.hist(vals, 94) M.xlim(-5, 45) M.xlabel('SST in degrees Celsius') M.ylim(0, 300000) M.ylabel('Count') M.title('Histogram of %s %d-day Mean from %s' % (variable.upper(), n, outFile)) M.show() print >>sys.stderr, 'Writing histogram plot to %s' % figFile M.savefig(figFile) return figFile
Example #22
Source File: climatology3Spark.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def contourMap(var, variable, coordinates, n, outFile): figFile = os.path.splitext(outFile)[0] + '_hist.png' # TODO: Downscale variable array (SST) before contouring, matplotlib is TOO slow on large arrays vals = var[variable][:] # Fixed color scale, write file, turn off auto borders, set title, reverse lat direction so monotonically increasing?? imageMap(var[coordinates[1]][:], var[coordinates[0]][:], var[variable][:], vmin=-2., vmax=45., outFile=figFile, autoBorders=False, title='%s %d-day Mean from %s' % (variable.upper(), n, outFile)) print >>sys.stderr, 'Writing contour plot to %s' % figFile return figFile
Example #23
Source File: food.py From tierpsy-tracker with MIT License | 5 votes |
def _h_smooth_cnt(food_cnt, resampling_N = 1000, smooth_window=None, _is_debug=False): if smooth_window is None: smooth_window = resampling_N//20 if not _is_valid_cnt(food_cnt): #invalid contour arrays return food_cnt smooth_window = smooth_window if smooth_window%2 == 1 else smooth_window+1 # calculate the cumulative length for each segment in the curve dx = np.diff(food_cnt[:, 0]) dy = np.diff(food_cnt[:, 1]) dr = np.sqrt(dx * dx + dy * dy) lengths = np.cumsum(dr) lengths = np.hstack((0, lengths)) # add the first point tot_length = lengths[-1] fx = interp1d(lengths, food_cnt[:, 0]) fy = interp1d(lengths, food_cnt[:, 1]) subLengths = np.linspace(0 + np.finfo(float).eps, tot_length, resampling_N) rx = fx(subLengths) ry = fy(subLengths) pol_degree = 3 rx = savgol_filter(rx, smooth_window, pol_degree, mode='wrap') ry = savgol_filter(ry, smooth_window, pol_degree, mode='wrap') food_cnt_s = np.stack((rx, ry), axis=1) if _is_debug: import matplotlib.pylab as plt plt.figure() plt.plot(food_cnt[:, 0], food_cnt[:, 1], '.-') plt.plot(food_cnt_s[:, 0], food_cnt_s[:, 1], '.-') plt.axis('equal') plt.title('smoothed contour') return food_cnt_s #%%
Example #24
Source File: kernridgeregress_class.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def example2(m=100, scale=0.01, stride=2): #m,k = 100,1 upper = 6 xs1 = np.linspace(1,upper,m)[:,np.newaxis] y1true = np.sum(np.sin(xs1**2),1)[:,np.newaxis]/xs1 y1 = y1true + 0.05*np.random.randn(m,1) ridgecoeff = 1e-10 #stride = 2 #use only some points as trainig points e.g 2 means every 2nd gp1 = GaussProcess(xs1[::stride,:],y1[::stride,:], kernel=kernel_euclid, ridgecoeff=1e-10) yhatr1 = gp1.predict(xs1) plt.figure() plt.plot(y1true, y1,'bo',y1true, yhatr1,'r.') plt.title('euclid kernel: true versus noisy (blue) and estimated (red) observations') plt.figure() plt.plot(y1,'bo-',y1true,'go-',yhatr1,'r.-') plt.title('euclid kernel: true (green), noisy (blue) and estimated (red) '+ 'observations') gp2 = GaussProcess(xs1[::stride,:],y1[::stride,:], kernel=kernel_rbf, scale=scale, ridgecoeff=1e-2) yhatr2 = gp2.predict(xs1) plt.figure() plt.plot(y1true, y1,'bo',y1true, yhatr2,'r.') plt.title('rbf kernel: true versus noisy (blue) and estimated (red) observations') plt.figure() plt.plot(y1,'bo-',y1true,'go-',yhatr2,'r.-') plt.title('rbf kernel: true (green), noisy (blue) and estimated (red) '+ 'observations') #gp2.plot(y1)
Example #25
Source File: plotlib.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def plotVtecAndJasonTracks(gtcFiles, outFile=None, names=None, makeFigure=True, show=False, **options): """Plot GAIM climate and assim VTEC versus JASON using at least two 'gc' files. First file is usually climate file, and rest are assim files. """ ensureItems(options, {'title': 'GAIM vs. JASON for '+gtcFiles[0], \ 'xlabel': 'Geographic Latitude (deg)', 'ylabel': 'VTEC (TECU)'}) if 'show' in options: show = True del options['show'] M.subplot(211) gtcFile = gtcFiles.pop(0) name = 'clim_' if names: name = names.pop(0) specs = [(gtcFile, 'latitude:2,jason:6,gim__:8,%s:13,iri__:10' % name)] name = 'assim' for i, gtcFile in enumerate(gtcFiles): label = name if len(gtcFiles) > 1: label += str(i+1) specs.append( (gtcFile, 'latitude:2,%s:13' % label) ) plotColumns(specs, rmsDiffFrom='jason', floatFormat='%5.1f', **options) M.legend() M.subplot(212) options.update({'title': 'JASON Track Plot', 'xlabel': 'Longitude (deg)', 'ylabel': 'Latitude (deg)'}) fields = N.array([map(floatOrMiss, line.split()) for line in open(gtcFiles[0], 'r')]) lons = fields[:,2]; lats = fields[:,1] marksOnMap(lons, lats, show=show, **options) if outFile: M.savefig(outFile)
Example #26
Source File: kde_subclass.py From rmats2sashimiplot with GNU General Public License v2.0 | 5 votes |
def plotkde(covfact): gkde.reset_covfact(covfact) kdepdf = gkde.evaluate(ind) plt.figure() # plot histgram of sample plt.hist(xn, bins=20, normed=1) # plot estimated density plt.plot(ind, kdepdf, label='kde', color="g") # plot data generating density plt.plot(ind, alpha * stats.norm.pdf(ind, loc=mlow) + (1-alpha) * stats.norm.pdf(ind, loc=mhigh), color="r", label='DGP: normal mix') plt.title('Kernel Density Estimation - ' + str(gkde.covfact)) plt.legend()
Example #27
Source File: evaluate.py From text-classifier with Apache License 2.0 | 5 votes |
def plt_history(history, output_dir='output/', model_name='cnn'): try: from matplotlib import pyplot model_name = model_name.upper() fig1 = pyplot.figure() pyplot.plot(history.history['loss'], 'r', linewidth=3.0) pyplot.plot(history.history['val_loss'], 'b', linewidth=3.0) pyplot.legend(['Training loss', 'Validation Loss'], fontsize=18) pyplot.xlabel('Epochs ', fontsize=16) pyplot.ylabel('Loss', fontsize=16) pyplot.title('Loss Curves :' + model_name, fontsize=16) loss_path = output_dir + model_name + '_loss.png' fig1.savefig(loss_path) print('save to:', loss_path) # pyplot.show() fig2 = pyplot.figure() pyplot.plot(history.history['acc'], 'r', linewidth=3.0) pyplot.plot(history.history['val_acc'], 'b', linewidth=3.0) pyplot.legend(['Training Accuracy', 'Validation Accuracy'], fontsize=18) pyplot.xlabel('Epochs ', fontsize=16) pyplot.ylabel('Accuracy', fontsize=16) pyplot.title('Accuracy Curves : ' + model_name, fontsize=16) acc_path = output_dir + model_name + '_accuracy.png' fig2.savefig(acc_path) print('save to:', acc_path) except Exception as e: print("save image error with matplotlib") pass
Example #28
Source File: plot_roc.py From speaker_recognition with Apache License 2.0 | 5 votes |
def plot_roc(score_list, save_dir, plot_name): save_path = os.path.join(save_dir, plot_name + ".jpg") # 按照 score 排序 threshold_value = sorted([score for score, _ in score_list]) threshold_num = len(threshold_value) accracy_array = np.zeros(threshold_num) precision_array = np.zeros(threshold_num) TPR_array = np.zeros(threshold_num) TNR_array = np.zeros(threshold_num) FNR_array = np.zeros(threshold_num) FPR_array = np.zeros(threshold_num) # calculate all the rates for thres in range(threshold_num): accracy, precision, TPR, TNR, FNR, FPR = cal_rate(score_list, threshold_value[thres]) accracy_array[thres] = accracy precision_array[thres] = precision TPR_array[thres] = TPR TNR_array[thres] = TNR FNR_array[thres] = FNR FPR_array[thres] = FPR AUC = np.trapz(TPR_array, FPR_array) threshold = np.argmin(abs(FNR_array - FPR_array)) EER = (FNR_array[threshold] + FPR_array[threshold]) / 2 # print('EER : %f AUC : %f' % (EER, -AUC)) plt.plot(FPR_array, TPR_array) plt.title('ROC') plt.xlabel('FPR') plt.ylabel('TPR') plt.text(0.2, 0, s="EER :{} AUC :{} Threshold:{}".format(round(EER, 4), round(-AUC, 4), round(threshold_value[threshold], 4)), fontsize=10) plt.legend() plt.savefig(save_path) plt.show()
Example #29
Source File: PybacktestChef.py From OpenTrader with GNU Lesser General Public License v3.0 | 5 votes |
def vPlotTrades(self, subset=None): if subset is None: subset = slice(None, None) fr = self.trades.ix[subset] le = fr.price[(fr.pos > 0) & (fr.vol > 0)] se = fr.price[(fr.pos < 0) & (fr.vol < 0)] lx = fr.price[(fr.pos.shift() > 0) & (fr.vol < 0)] sx = fr.price[(fr.pos.shift() < 0) & (fr.vol > 0)] import matplotlib.pylab as pylab pylab.plot(le.index, le.values, '^', color='lime', markersize=12, label='long enter') pylab.plot(se.index, se.values, 'v', color='red', markersize=12, label='short enter') pylab.plot(lx.index, lx.values, 'o', color='lime', markersize=7, label='long exit') pylab.plot(sx.index, sx.values, 'o', color='red', markersize=7, label='short exit') eq = self.equity.ix[subset].cumsum() ix = eq.index oOS = getattr(self.ohlc, self.open_label) (eq + oOS[ix[0]]).plot(color='red', style='-', label='strategy') # self.ohlc.O.ix[ix[0]:ix[-1]].plot(color='black', label='price') oOS.ix[subset].plot(color='black', label='price') pylab.legend(loc='best') pylab.title('%s\nTrades for %s' % (self, subset))
Example #30
Source File: utils.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 5 votes |
def plot_k_complexity(ks, train_errors, test_errors): pylab.figure(num=None, figsize=(6, 5)) pylab.ylim([0.0, 1.0]) pylab.xlabel('k') pylab.ylabel('Error') pylab.title('Errors for for different values of $k$') pylab.plot( ks, test_errors, "--", ks, train_errors, "-", lw=1) pylab.legend(["test error", "train error"], loc="upper right") pylab.grid(True, linestyle='-', color='0.75') pylab.savefig( os.path.join(CHART_DIR, "kcomplexity.png"), bbox_inches="tight")