Python matplotlib.pylab.bar() Examples

The following are 10 code examples of matplotlib.pylab.bar(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module matplotlib.pylab , or try the search function .
Example #1
Source File: utils.py    From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License 6 votes vote down vote up
def plot_feat_importance(feature_names, clf, name):
    pylab.clf()
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(range(len(coef)))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") 
Example #2
Source File: utils.py    From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License 6 votes vote down vote up
def plot_feat_importance(feature_names, clf, name):
    pylab.clf()
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(range(len(coef)))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") 
Example #3
Source File: utils.py    From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License 6 votes vote down vote up
def plot_feat_importance(feature_names, clf, name):
    pylab.figure(num=None, figsize=(6, 5))
    coef_ = clf.coef_
    important = np.argsort(np.absolute(coef_.ravel()))
    f_imp = feature_names[important]
    coef = coef_.ravel()[important]
    inds = np.argsort(coef)
    f_imp = f_imp[inds]
    coef = coef[inds]
    xpos = np.array(list(range(len(coef))))
    pylab.bar(xpos, coef, width=1)

    pylab.title('Feature importance for %s' % (name))
    ax = pylab.gca()
    ax.set_xticks(np.arange(len(coef)))
    labels = ax.set_xticklabels(f_imp)
    for label in labels:
        label.set_rotation(90)
    filename = name.replace(" ", "_")
    pylab.savefig(os.path.join(
        CHART_DIR, "feat_imp_%s.png" % filename), bbox_inches="tight") 
Example #4
Source File: base.py    From pylift with BSD 2-Clause "Simplified" License 6 votes vote down vote up
def _plot_NWOE_bins(NWOE_dict, feats):
    """
    Plots the NWOE by bin for the subset of features interested in (form of list)

    Parameters
    ----------
    - NWOE_dict = dictionary output of `NWOE` function
    - feats = list of features to plot NWOE for

    Returns
    -------
    - plots of NWOE for each feature by bin
    """

    for feat in feats:
        fig, ax = _plot_defaults()
        feat_df = NWOE_dict[feat].reset_index()
        plt.bar(range(len(feat_df)), feat_df['NWOE'], tick_label=feat_df[str(feat)+'_bin'], color='k', alpha=0.5)
        plt.xticks(rotation='vertical')
        ax.set_title('NWOE by bin for '+str(feat))
        ax.set_xlabel('Bin Interval');
    return ax 
Example #5
Source File: base.py    From pylift with BSD 2-Clause "Simplified" License 6 votes vote down vote up
def _plot_NWOE_bins(NWOE_dict, feats):
    """
    Plots the NWOE by bin for the subset of features interested in (form of list)

    Parameters
    ----------
    - NWOE_dict = dictionary output of `NWOE` function
    - feats = list of features to plot NWOE for

    Returns
    -------
    - plots of NWOE for each feature by bin
    """

    for feat in feats:
        fig, ax = _plot_defaults()
        feat_df = NWOE_dict[feat].reset_index()
        plt.bar(range(len(feat_df)), feat_df['NWOE'], tick_label=feat_df[str(feat)+'_bin'], color='k', alpha=0.5)
        plt.xticks(rotation='vertical')
        ax.set_title('NWOE by bin for '+str(feat))
        ax.set_xlabel('Bin Interval');
    return ax 
Example #6
Source File: 07_dqn_distrib.py    From Deep-Reinforcement-Learning-Hands-On with MIT License 6 votes vote down vote up
def save_state_images(frame_idx, states, net, device="cpu", max_states=200):
    ofs = 0
    p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z)
    for batch in np.array_split(states, 64):
        states_v = torch.tensor(batch).to(device)
        action_prob = net.apply_softmax(net(states_v)).data.cpu().numpy()
        batch_size, num_actions, _ = action_prob.shape
        for batch_idx in range(batch_size):
            plt.clf()
            for action_idx in range(num_actions):
                plt.subplot(num_actions, 1, action_idx+1)
                plt.bar(p, action_prob[batch_idx, action_idx], width=0.5)
            plt.savefig("states/%05d_%08d.png" % (ofs + batch_idx, frame_idx))
        ofs += batch_size
        if ofs >= max_states:
            break 
Example #7
Source File: 07_dqn_distrib.py    From Deep-Reinforcement-Learning-Hands-On with MIT License 6 votes vote down vote up
def save_transition_images(batch_size, predicted, projected, next_distr, dones, rewards, save_prefix):
    for batch_idx in range(batch_size):
        is_done = dones[batch_idx]
        reward = rewards[batch_idx]
        plt.clf()
        p = np.arange(Vmin, Vmax + DELTA_Z, DELTA_Z)
        plt.subplot(3, 1, 1)
        plt.bar(p, predicted[batch_idx], width=0.5)
        plt.title("Predicted")
        plt.subplot(3, 1, 2)
        plt.bar(p, projected[batch_idx], width=0.5)
        plt.title("Projected")
        plt.subplot(3, 1, 3)
        plt.bar(p, next_distr[batch_idx], width=0.5)
        plt.title("Next state")
        suffix = ""
        if reward != 0.0:
            suffix = suffix + "_%.0f" % reward
        if is_done:
            suffix = suffix + "_done"
        plt.savefig("%s_%02d%s.png" % (save_prefix, batch_idx, suffix)) 
Example #8
Source File: util.py    From Azimuth with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def autolabel(ax, rects, strfrm='%.2f'):
    '''
    Automatically add value over each bar in bar chart
    http://matplotlib.org/1.4.2/examples/api/barchart_demo.html
    '''
    for rect in rects:
        height = rect.get_height()
        ax.text(rect.get_x()+rect.get_width()/2., 1.05*height, strfrm % float(height),
                ha='center', va='bottom') 
Example #9
Source File: PlotComps.py    From refinery with MIT License 5 votes vote down vote up
def plotData(Data, nObsPlot=5000):
  ''' Plot data items, at most nObsPlot distinct points (for quick rendering)
  '''
  if type(Data) == bnpy.data.XData:
    PRNG = np.random.RandomState(nObsPlot)
    pIDs = PRNG.permutation(Data.nObs)[:nObsPlot]
    if Data.dim > 1:
      pylab.plot(Data.X[pIDs,0], Data.X[pIDs,1], 'k.')  
    else:
      hist, bin_edges = pylab.histogram(Data.X, bins=25)
      xs = bin_edges[:-1]
      ys = np.asarray(hist, dtype=np.float32) / np.sum(hist)
      pylab.bar(xs, ys, width=0.8*(bin_edges[1]-bin_edges[0]), color='k') 
Example #10
Source File: run.py    From ipython-cypher with GNU General Public License v2.0 5 votes vote down vote up
def bar(self, key_word_sep=" ", title=None, **kwargs):
        """Generates a pylab bar plot from the result set.

        ``matplotlib`` must be installed, and in an
        IPython Notebook, inlining must be on::

            %%matplotlib inline

        The last quantitative column is taken as the Y values;
        all other columns are combined to label the X axis.

        :param title: plot title, defaults to names of Y value columns
        :param key_word_sep: string used to separate column values
                             from each other in labels

        Any additional keyword arguments will be passsed
        through to ``matplotlib.pylab.bar``.
        """
        if not plt:
            raise ImportError("Try installing matplotlib first.")
        self.guess_pie_columns(xlabel_sep=key_word_sep)
        plot = plt.bar(range(len(self.ys[0])), self.ys[0], **kwargs)
        if self.xlabels:
            plt.xticks(range(len(self.xlabels)), self.xlabels,
                       rotation=45)
        plt.xlabel(self.xlabel)
        plt.ylabel(self.ys[0].name)
        return plot