Python matplotlib.pylab.xticks() Examples
The following are 20
code examples of matplotlib.pylab.xticks().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pylab
, or try the search function
.
Example #1
Source File: demo_mi.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 6 votes |
def plot_entropy(): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) title = "Entropy $H(X)$" pylab.title(title) pylab.xlabel("$P(X=$coin will show heads up$)$") pylab.ylabel("$H(X)$") pylab.xlim(xmin=0, xmax=1.1) x = np.arange(0.001, 1, 0.001) y = -x * np.log2(x) - (1 - x) * np.log2(1 - x) pylab.plot(x, y) # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in # [0,1,2,3,4]]) pylab.autoscale(tight=True) pylab.grid(True) filename = "entropy_demo.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
Example #2
Source File: utils.py From ndvr-dml with Apache License 2.0 | 6 votes |
def plot_pr_curve(pr_curve_dml, pr_curve_base, title): """ Function that plots the PR-curve. Args: pr_curve: the values of precision for each recall value title: the title of the plot """ plt.figure(figsize=(16, 9)) plt.plot(np.arange(0.0, 1.05, 0.05), pr_curve_base, color='r', marker='o', linewidth=3, markersize=10) plt.plot(np.arange(0.0, 1.05, 0.05), pr_curve_dml, color='b', marker='o', linewidth=3, markersize=10) plt.grid(True, linestyle='dotted') plt.xlabel('Recall', color='k', fontsize=27) plt.ylabel('Precision', color='k', fontsize=27) plt.yticks(color='k', fontsize=20) plt.xticks(color='k', fontsize=20) plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title(title, color='k', fontsize=27) plt.tight_layout() plt.show()
Example #3
Source File: base.py From pylift with BSD 2-Clause "Simplified" License | 6 votes |
def _plot_NWOE_bins(NWOE_dict, feats): """ Plots the NWOE by bin for the subset of features interested in (form of list) Parameters ---------- - NWOE_dict = dictionary output of `NWOE` function - feats = list of features to plot NWOE for Returns ------- - plots of NWOE for each feature by bin """ for feat in feats: fig, ax = _plot_defaults() feat_df = NWOE_dict[feat].reset_index() plt.bar(range(len(feat_df)), feat_df['NWOE'], tick_label=feat_df[str(feat)+'_bin'], color='k', alpha=0.5) plt.xticks(rotation='vertical') ax.set_title('NWOE by bin for '+str(feat)) ax.set_xlabel('Bin Interval'); return ax
Example #4
Source File: base.py From pylift with BSD 2-Clause "Simplified" License | 6 votes |
def _plot_NWOE_bins(NWOE_dict, feats): """ Plots the NWOE by bin for the subset of features interested in (form of list) Parameters ---------- - NWOE_dict = dictionary output of `NWOE` function - feats = list of features to plot NWOE for Returns ------- - plots of NWOE for each feature by bin """ for feat in feats: fig, ax = _plot_defaults() feat_df = NWOE_dict[feat].reset_index() plt.bar(range(len(feat_df)), feat_df['NWOE'], tick_label=feat_df[str(feat)+'_bin'], color='k', alpha=0.5) plt.xticks(rotation='vertical') ax.set_title('NWOE by bin for '+str(feat)) ax.set_xlabel('Bin Interval'); return ax
Example #5
Source File: evaluation.py From deepecg with MIT License | 5 votes |
def plot_confusion_matrix(y_true, y_pred, classes, figure_size=(8, 8)): """This function plots a confusion matrix.""" # Compute confusion matrix cm = confusion_matrix(y_true, y_pred) cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100 # Build Laussen Labs colormap cmap = LinearSegmentedColormap.from_list('laussen_labs_green', ['w', '#43BB9B'], N=256) # Setup plot plt.figure(figsize=figure_size) # Plot confusion matrix plt.imshow(cm, interpolation='nearest', cmap=cmap) # Modify axes tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=90) plt.yticks(tick_marks, classes) thresh = cm.max() / 1.5 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, str(np.round(cm[i, j], 2)) + ' %', horizontalalignment="center", color="white" if cm[i, j] > thresh else "black", fontsize=20) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.tight_layout() plt.ylabel('True Label', fontsize=25) plt.xlabel('Predicted Label', fontsize=25) plt.show()
Example #6
Source File: wordfreq_app.py From V1EngineeringInc-Docs with Creative Commons Attribution Share Alike 4.0 International | 5 votes |
def plot_word_freq_dist(text): fd = text.vocab() samples = [item for item, _ in fd.most_common(50)] values = [fd[sample] for sample in samples] values = [sum(values[: i + 1]) * 100.0 / fd.N() for i in range(len(values))] pylab.title(text.name) pylab.xlabel("Samples") pylab.ylabel("Cumulative Percentage") pylab.plot(values) pylab.xticks(range(len(samples)), [str(s) for s in samples], rotation=90) pylab.show()
Example #7
Source File: run.py From ipython-cypher with GNU General Public License v2.0 | 5 votes |
def bar(self, key_word_sep=" ", title=None, **kwargs): """Generates a pylab bar plot from the result set. ``matplotlib`` must be installed, and in an IPython Notebook, inlining must be on:: %%matplotlib inline The last quantitative column is taken as the Y values; all other columns are combined to label the X axis. :param title: plot title, defaults to names of Y value columns :param key_word_sep: string used to separate column values from each other in labels Any additional keyword arguments will be passsed through to ``matplotlib.pylab.bar``. """ if not plt: raise ImportError("Try installing matplotlib first.") self.guess_pie_columns(xlabel_sep=key_word_sep) plot = plt.bar(range(len(self.ys[0])), self.ys[0], **kwargs) if self.xlabels: plt.xticks(range(len(self.xlabels)), self.xlabels, rotation=45) plt.xlabel(self.xlabel) plt.ylabel(self.ys[0].name) return plot
Example #8
Source File: generate_plots.py From hand_eye_calibration with BSD 3-Clause "New" or "Revised" License | 5 votes |
def generate_time_plot(methods, datasets, runtimes_per_method, colors): num_methods = len(methods) num_datasets = len(datasets) x_ticks = np.linspace(0., 1., num_methods) width = 0.6 / num_methods / num_datasets spacing = 0.4 / num_methods / num_datasets fig, ax1 = plt.subplots() ax1.set_ylabel('Time [s]', color='b') ax1.tick_params('y', colors='b') ax1.set_yscale('log') fig.suptitle("Hand-Eye Calibration Method Timings", fontsize='24') handles = [] for i, dataset in enumerate(datasets): runtimes = [runtimes_per_method[dataset][method] for method in methods] bp = ax1.boxplot( runtimes, 0, '', positions=(x_ticks + (i - num_datasets / 2. + 0.5) * spacing * 2), widths=width) plt.setp(bp['boxes'], color=colors[i], linewidth=line_width) plt.setp(bp['whiskers'], color=colors[i], linewidth=line_width) plt.setp(bp['fliers'], color=colors[i], marker='+', linewidth=line_width) plt.setp(bp['medians'], color=colors[i], marker='+', linewidth=line_width) plt.setp(bp['caps'], color=colors[i], linewidth=line_width) handles.append(mpatches.Patch(color=colors[i], label=dataset)) plt.legend(handles=handles, loc=2) plt.xticks(x_ticks, methods) plt.xlim(x_ticks[0] - 2.5 * spacing * num_datasets, x_ticks[-1] + 2.5 * spacing * num_datasets) plt.show()
Example #9
Source File: generate_plots.py From hand_eye_calibration with BSD 3-Clause "New" or "Revised" License | 5 votes |
def generate_box_plot(dataset, methods, position_rmses, orientation_rmses): num_methods = len(methods) x_ticks = np.linspace(0., 1., num_methods) width = 0.3 / num_methods spacing = 0.3 / num_methods fig, ax1 = plt.subplots() ax1.set_ylabel('RMSE position [m]', color='b') ax1.tick_params('y', colors='b') fig.suptitle( "Hand-Eye Calibration Method Error {}".format(dataset), fontsize='24') bp_position = ax1.boxplot(position_rmses, 0, '', positions=x_ticks - spacing, widths=width) plt.setp(bp_position['boxes'], color='blue', linewidth=line_width) plt.setp(bp_position['whiskers'], color='blue', linewidth=line_width) plt.setp(bp_position['fliers'], color='blue', marker='+', linewidth=line_width) plt.setp(bp_position['caps'], color='blue', linewidth=line_width) plt.setp(bp_position['medians'], color='blue', linewidth=line_width) ax2 = ax1.twinx() ax2.set_ylabel('RMSE Orientation [$^\circ$]', color='g') ax2.tick_params('y', colors='g') bp_orientation = ax2.boxplot( orientation_rmses, 0, '', positions=x_ticks + spacing, widths=width) plt.setp(bp_orientation['boxes'], color='green', linewidth=line_width) plt.setp(bp_orientation['whiskers'], color='green', linewidth=line_width) plt.setp(bp_orientation['fliers'], color='green', marker='+') plt.setp(bp_orientation['caps'], color='green', linewidth=line_width) plt.setp(bp_orientation['medians'], color='green', linewidth=line_width) plt.xticks(x_ticks, methods) plt.xlim(x_ticks[0] - 2.5 * spacing, x_ticks[-1] + 2.5 * spacing) plt.show()
Example #10
Source File: dds_parallel_plot.py From spotpy with MIT License | 5 votes |
def subplot(data, name, ylabel): fig = plt.figure(figsize=(20, 6)) ax = plt.subplot(111) rep_labels = [str(j) for j in reps] x_pos = [i for i, _ in enumerate(rep_labels)] X = np.arange(len(data)) ax_plot = ax.bar(x_pos, data, color=color_map(data_normalizer(data)), width=0.45) plt.xticks(x_pos, rep_labels) plt.xlabel("Repetitions") plt.ylabel(ylabel) autolabel(ax, ax_plot) plt.savefig(name + ".png")
Example #11
Source File: interactive.py From pyiron with BSD 3-Clause "New" or "Revised" License | 5 votes |
def check_band_occupancy(self, plot=True): """ Check whether there are still empty bands available. args: plot (bool): plots occupancy of the last step returns: True if there are still empty bands """ import matplotlib.pylab as plt elec_dict = self._job['output/generic/dft']['n_valence'] if elec_dict is None: raise AssertionError('Number of electrons not parsed') n_elec = np.sum([elec_dict[k] for k in self._job.structure.get_chemical_symbols()]) n_elec = int(np.ceil(n_elec/2)) bands = self._job['output/generic/dft/bands_occ'][-1] bands = bands.reshape(-1, bands.shape[-1]) max_occ = np.sum(bands>0, axis=-1).max() n_bands = bands.shape[-1] if plot: xticks = np.arange(1, n_bands+1) plt.xlabel('Electron number') plt.ylabel('Occupancy') if n_bands<20: plt.xticks(xticks) plt.axvline(n_elec, label='#electrons: {}'.format(n_elec)) plt.axvline(max_occ, color='red', label='Max occupancy: {}'.format(max_occ)) plt.axvline(n_bands, color='green', label='Number of bands: {}'.format(n_bands)) plt.plot(xticks, bands.T, 'x', color='black') plt.legend() if max_occ < n_bands: return True else: return False
Example #12
Source File: plot.py From POT with MIT License | 5 votes |
def plot1D_mat(a, b, M, title=''): """ Plot matrix M with the source and target 1D distribution Creates a subplot with the source distribution a on the left and target distribution b on the tot. The matrix M is shown in between. Parameters ---------- a : ndarray, shape (na,) Source distribution b : ndarray, shape (nb,) Target distribution M : ndarray, shape (na, nb) Matrix to plot """ na, nb = M.shape gs = gridspec.GridSpec(3, 3) xa = np.arange(na) xb = np.arange(nb) ax1 = pl.subplot(gs[0, 1:]) pl.plot(xb, b, 'r', label='Target distribution') pl.yticks(()) pl.title(title) ax2 = pl.subplot(gs[1:, 0]) pl.plot(a, xa, 'b', label='Source distribution') pl.gca().invert_xaxis() pl.gca().invert_yaxis() pl.xticks(()) pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2) pl.imshow(M, interpolation='nearest') pl.axis('off') pl.xlim((0, nb)) pl.tight_layout() pl.subplots_adjust(wspace=0., hspace=0.2)
Example #13
Source File: demo_corr.py From Building-Machine-Learning-Systems-With-Python-Second-Edition with MIT License | 5 votes |
def _plot_correlation_func(x, y): r, p = pearsonr(x, y) title = "Cor($X_1$, $X_2$) = %.3f" % r pylab.scatter(x, y) pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$") f1 = scipy.poly1d(scipy.polyfit(x, y, 1)) pylab.plot(x, f1(x), "r--", linewidth=2) # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in # [0,1,2,3,4]])
Example #14
Source File: dependencygraph.py From razzy-spinner with GNU General Public License v3.0 | 5 votes |
def malt_demo(nx=False): """ A demonstration of the result of reading a dependency version of the first sentence of the Penn Treebank. """ dg = DependencyGraph("""Pierre NNP 2 NMOD Vinken NNP 8 SUB , , 2 P 61 CD 5 NMOD years NNS 6 AMOD old JJ 2 NMOD , , 2 P will MD 0 ROOT join VB 8 VC the DT 11 NMOD board NN 9 OBJ as IN 9 VMOD a DT 15 NMOD nonexecutive JJ 15 NMOD director NN 12 PMOD Nov. NNP 9 VMOD 29 CD 16 NMOD . . 9 VMOD """) tree = dg.tree() tree.pprint() if nx: # currently doesn't work import networkx from matplotlib import pylab g = dg.nx_graph() g.info() pos = networkx.spring_layout(g, dim=1) networkx.draw_networkx_nodes(g, pos, node_size=50) # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8) networkx.draw_networkx_labels(g, pos, dg.nx_labels) pylab.xticks([]) pylab.yticks([]) pylab.savefig('tree.png') pylab.show()
Example #15
Source File: wordfreq_app.py From razzy-spinner with GNU General Public License v3.0 | 5 votes |
def plot_word_freq_dist(text): fd = text.vocab() samples = [item for item, _ in fd.most_common(50)] values = [fd[sample] for sample in samples] values = [sum(values[:i+1]) * 100.0/fd.N() for i in range(len(values))] pylab.title(text.name) pylab.xlabel("Samples") pylab.ylabel("Cumulative Percentage") pylab.plot(values) pylab.xticks(range(len(samples)), [str(s) for s in samples], rotation=90) pylab.show()
Example #16
Source File: utils.py From miosqp with Apache License 2.0 | 4 votes |
def plot(results, time): """ Plot simulation results """ t = time.t t_init = t[0] + time.init_periods * time.Nstpp * time.Ts t_end = t_init + time.Nstpp * time.Ts Y_phase = results.Y_phase Y_star_phase = results.Y_star_phase U = results.U x_ticks = np.arange(t_init, t_end + 1e-08, 0.0025) x_ticks_labels = ['0', '', '5', '', '10', '', '15', '', '20'] # Plot currents plt.figure() plt.plot(t[:-1], Y_phase[0,:], '-', color=colors['o']) plt.plot(t[:-1], Y_star_phase[0,:], '--', color=colors['o']) plt.plot(t[:-1], Y_phase[1,:], '-', color=colors['g']) plt.plot(t[:-1], Y_star_phase[1,:], '--', color=colors['g']) plt.plot(t[:-1], Y_phase[2,:], '-', color=colors['b']) plt.plot(t[:-1], Y_star_phase[2,:], '--', color=colors['b']) axes = plt.gca() axes.set_xlim([t_init, t_end]) axes.set_ylim([-1.25, 1.25]) plt.xticks(x_ticks, x_ticks_labels) plt.grid() axes.set_xlabel('Time [ms]') plt.tight_layout() plt.savefig('results/power_converter_currents.pdf') plt.show(block=False) # Plot inputs fig, ax = plt.subplots(3, 1) ax[0].step(t[:-1], U[0, :], color=colors['o']) ax[0].set_xlim([t_init, t_end]) ax[0].set_ylim([-1.25, 1.25]) ax[0].grid(True) ax[0].set_xticks(x_ticks) ax[0].set_xticklabels(x_ticks_labels) ax[1].step(t[:-1], U[1, :], color=colors['g']) ax[1].set_ylim([-1.25, 1.25]) ax[1].set_xlim([t_init, t_end]) ax[1].set_xticks(x_ticks) ax[1].set_xticklabels(x_ticks_labels) ax[1].grid(True) ax[2].step(t[:-1], U[2, :], color=colors['b']) ax[2].set_ylim([-1.25, 1.25]) ax[2].set_xlim([t_init, t_end]) ax[2].set_xlabel('Time [ms]') ax[2].grid(True) ax[2].set_xticks(x_ticks) ax[2].set_xticklabels(x_ticks_labels) plt.tight_layout() plt.savefig('results/power_converter_inputs.pdf') plt.show(block=False)
Example #17
Source File: GaussViz.py From refinery with MIT License | 4 votes |
def plotCovMatFromHModel(hmodel, compListToPlot=None, compsToHighlight=None, wTHR=0.001): ''' Plot cov matrix visualization for each "significant" component in hmodel Args ------- hmodel : bnpy HModel object compListToPlot : array-like of integer IDs of components within hmodel compsToHighlight : int or array-like of integer IDs to highlight if None, all components get unique colors if not None, only highlighted components get colors. wTHR : float threshold on minimum weight assigned to comp tobe "plottable" ''' if compsToHighlight is not None: compsToHighlight = np.asarray(compsToHighlight) if compsToHighlight.ndim == 0: compsToHighlight = np.asarray([compsToHighlight]) else: compsToHighlight = list() if compListToPlot is None: compListToPlot = np.arange(0, hmodel.allocModel.K) try: w = np.exp(hmodel.allocModel.Elogw) except Exception: w = hmodel.allocModel.w nRow = 2 nCol = np.ceil(hmodel.obsModel.K/2.0) colorID = 0 for plotID, kk in enumerate(compListToPlot): if w[kk] < wTHR and kk not in compsToHighlight: Sigma = getEmptyCompSigmaImage(hmodel.obsModel.D) clim = [0, 1] else: Sigma = hmodel.obsModel.get_covar_mat_for_comp(kk) clim = [-.25, 1] pylab.subplot(nRow, nCol, plotID) pylab.imshow(Sigma, interpolation='nearest', cmap='hot', clim=clim) pylab.xticks([]) pylab.yticks([]) pylab.xlabel('%.2f' % (w[kk])) if kk in compsToHighlight: pylab.xlabel('***')
Example #18
Source File: probability.py From razzy-spinner with GNU General Public License v3.0 | 4 votes |
def plot(self, *args, **kwargs): """ Plot the given samples from the conditional frequency distribution. For a cumulative plot, specify cumulative=True. (Requires Matplotlib to be installed.) :param samples: The samples to plot :type samples: list :param title: The title for the graph :type title: str :param conditions: The conditions to plot (default is all) :type conditions: list """ try: from matplotlib import pylab except ImportError: raise ValueError('The plot function requires matplotlib to be installed.' 'See http://matplotlib.org/') cumulative = _get_kwarg(kwargs, 'cumulative', False) conditions = _get_kwarg(kwargs, 'conditions', sorted(self.conditions())) title = _get_kwarg(kwargs, 'title', '') samples = _get_kwarg(kwargs, 'samples', sorted(set(v for c in conditions for v in self[c]))) # this computation could be wasted if not "linewidth" in kwargs: kwargs["linewidth"] = 2 for condition in conditions: if cumulative: freqs = list(self[condition]._cumulative_frequencies(samples)) ylabel = "Cumulative Counts" legend_loc = 'lower right' else: freqs = [self[condition][sample] for sample in samples] ylabel = "Counts" legend_loc = 'upper right' # percents = [f * 100 for f in freqs] only in ConditionalProbDist? kwargs['label'] = "%s" % condition pylab.plot(freqs, *args, **kwargs) pylab.legend(loc=legend_loc) pylab.grid(True, color="silver") pylab.xticks(range(len(samples)), [compat.text_type(s) for s in samples], rotation=90) if title: pylab.title(title) pylab.xlabel("Samples") pylab.ylabel(ylabel) pylab.show()
Example #19
Source File: dependencygraph.py From V1EngineeringInc-Docs with Creative Commons Attribution Share Alike 4.0 International | 4 votes |
def malt_demo(nx=False): """ A demonstration of the result of reading a dependency version of the first sentence of the Penn Treebank. """ dg = DependencyGraph( """Pierre NNP 2 NMOD Vinken NNP 8 SUB , , 2 P 61 CD 5 NMOD years NNS 6 AMOD old JJ 2 NMOD , , 2 P will MD 0 ROOT join VB 8 VC the DT 11 NMOD board NN 9 OBJ as IN 9 VMOD a DT 15 NMOD nonexecutive JJ 15 NMOD director NN 12 PMOD Nov. NNP 9 VMOD 29 CD 16 NMOD . . 9 VMOD """ ) tree = dg.tree() tree.pprint() if nx: # currently doesn't work import networkx from matplotlib import pylab g = dg.nx_graph() g.info() pos = networkx.spring_layout(g, dim=1) networkx.draw_networkx_nodes(g, pos, node_size=50) # networkx.draw_networkx_edges(g, pos, edge_color='k', width=8) networkx.draw_networkx_labels(g, pos, dg.nx_labels) pylab.xticks([]) pylab.yticks([]) pylab.savefig('tree.png') pylab.show()
Example #20
Source File: probability.py From razzy-spinner with GNU General Public License v3.0 | 4 votes |
def plot(self, *args, **kwargs): """ Plot samples from the frequency distribution displaying the most frequent sample first. If an integer parameter is supplied, stop after this many samples have been plotted. For a cumulative plot, specify cumulative=True. (Requires Matplotlib to be installed.) :param title: The title for the graph :type title: str :param cumulative: A flag to specify whether the plot is cumulative (default = False) :type title: bool """ try: from matplotlib import pylab except ImportError: raise ValueError('The plot function requires matplotlib to be installed.' 'See http://matplotlib.org/') if len(args) == 0: args = [len(self)] samples = [item for item, _ in self.most_common(*args)] cumulative = _get_kwarg(kwargs, 'cumulative', False) if cumulative: freqs = list(self._cumulative_frequencies(samples)) ylabel = "Cumulative Counts" else: freqs = [self[sample] for sample in samples] ylabel = "Counts" # percents = [f * 100 for f in freqs] only in ProbDist? pylab.grid(True, color="silver") if not "linewidth" in kwargs: kwargs["linewidth"] = 2 if "title" in kwargs: pylab.title(kwargs["title"]) del kwargs["title"] pylab.plot(freqs, **kwargs) pylab.xticks(range(len(samples)), [compat.text_type(s) for s in samples], rotation=90) pylab.xlabel("Samples") pylab.ylabel(ylabel) pylab.show()