Python chainer.optimizers.RMSprop() Examples
The following are 7
code examples of chainer.optimizers.RMSprop().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.optimizers
, or try the search function
.
Example #1
Source File: train_utils.py From chainer-segnet with MIT License | 6 votes |
def get_optimizer(opt, lr=None, adam_alpha=None, adam_beta1=None, adam_beta2=None, adam_eps=None, weight_decay=None): if opt == 'MomentumSGD': optimizer = optimizers.MomentumSGD(lr=lr, momentum=0.9) elif opt == 'Adam': optimizer = optimizers.Adam( alpha=adam_alpha, beta1=adam_beta1, beta2=adam_beta2, eps=adam_eps) elif opt == 'AdaGrad': optimizer = optimizers.AdaGrad(lr=lr) elif opt == 'RMSprop': optimizer = optimizers.RMSprop(lr=lr) else: raise Exception('No optimizer is selected') # The first model as the master model if opt == 'MomentumSGD': optimizer.decay = weight_decay return optimizer
Example #2
Source File: test_async.py From chainerrl with MIT License | 5 votes |
def test_share_states(self): model = L.Linear(2, 2) opt_a = optimizers.RMSprop() opt_a.setup(model) arrays = async_.share_states_as_shared_arrays(opt_a) opt_b = optimizers.RMSprop() opt_b.setup(copy.deepcopy(model)) # In Chainer v2, a model cannot be set up by two optimizers or more. opt_c = optimizers.RMSprop() opt_c.setup(copy.deepcopy(model)) """ Removed the tests by assert_different_pointers since they are trivial now. """ async_.set_shared_states(opt_b, arrays) async_.set_shared_states(opt_c, arrays) def assert_same_pointers(a, b): a = a.target b = b.target for param_name, param_a in a.namedparams(): param_b = dict(b.namedparams())[param_name] state_a = param_a.update_rule.state state_b = param_b.update_rule.state self.assertTrue(state_a) self.assertTrue(state_b) for state_name, state_val_a in state_a.items(): state_val_b = state_b[state_name] self.assertTrue(isinstance( state_val_a, np.ndarray)) self.assertTrue(isinstance( state_val_b, np.ndarray)) self.assertEqual(state_val_a.ctypes.data, state_val_b.ctypes.data) assert_same_pointers(opt_a, opt_b) assert_same_pointers(opt_a, opt_c)
Example #3
Source File: test_optimizers_by_linear_model.py From chainer with MIT License | 5 votes |
def create(self): kwargs = {'eps_inside_sqrt': self.eps_inside_sqrt} if self.dtype == numpy.float16: kwargs['eps'] = 1e-6 return optimizers.RMSprop(0.1, **kwargs)
Example #4
Source File: chainer_backend.py From Chimp with Apache License 2.0 | 5 votes |
def set_params(self, params): self.gpu = params.get('gpu',False) self.learning_rate = params.get('learning_rate',0.00025) self.decay_rate = params.get('decay_rate',0.95) self.discount = params.get('discount',0.95) self.clip_err = params.get('clip_err',False) self.target_net_update = params.get('target_net_update',10000) self.double_DQN = params.get('double_DQN',False) # setting up various possible gradient update algorithms opt = params.get('optim_name', 'ADAM') if opt == 'RMSprop': self.optimizer = optimizers.RMSprop(lr=self.learning_rate, alpha=self.decay_rate) elif opt == 'ADADELTA': print("Supplied learning rate not used with ADADELTA gradient update method") self.optimizer = optimizers.AdaDelta() elif opt == 'ADAM': self.optimizer = optimizers.Adam(alpha=self.learning_rate) elif opt == 'SGD': self.optimizer = optimizers.SGD(lr=self.learning_rate) else: print('The requested optimizer is not supported!!!') exit() if self.clip_err is not False: self.optimizer.add_hook(chainer.optimizer.GradientClipping(self.clip_err)) self.optim_name = params['optim_name']
Example #5
Source File: nutszebra_optimizer.py From neural_architecture_search_with_reinforcement_learning_appendix_a with MIT License | 5 votes |
def __init__(self, model=None, lr=0.045, decay=0.9, eps=1.0, weight_decay=4.0e-5, clip=2.0): super(OptimizerGooglenetV3, self).__init__(model) optimizer = optimizers.RMSprop(lr, decay, eps) weight_decay = chainer.optimizer.WeightDecay(weight_decay) clip = chainer.optimizer.GradientClipping(clip) optimizer.setup(self.model) optimizer.add_hook(weight_decay) optimizer.add_hook(clip) self.optimizer = optimizer
Example #6
Source File: train.py From deeppose with GNU General Public License v2.0 | 5 votes |
def get_optimizer(model, opt, lr, adam_alpha=None, adam_beta1=None, adam_beta2=None, adam_eps=None, weight_decay=None, resume_opt=None): if opt == 'MomentumSGD': optimizer = optimizers.MomentumSGD(lr=lr, momentum=0.9) elif opt == 'Adam': optimizer = optimizers.Adam( alpha=adam_alpha, beta1=adam_beta1, beta2=adam_beta2, eps=adam_eps) elif opt == 'AdaGrad': optimizer = optimizers.AdaGrad(lr=lr) elif opt == 'RMSprop': optimizer = optimizers.RMSprop(lr=lr) else: raise Exception('No optimizer is selected') # The first model as the master model optimizer.setup(model) if opt == 'MomentumSGD': optimizer.add_hook( chainer.optimizer.WeightDecay(weight_decay)) if resume_opt is not None: serializers.load_npz(resume_opt, optimizer) return optimizer
Example #7
Source File: train.py From chainer-wasserstein-gan with MIT License | 5 votes |
def train(args): nz = args.nz batch_size = args.batch_size epochs = args.epochs gpu = args.gpu # CIFAR-10 images in range [-1, 1] (tanh generator outputs) train, _ = datasets.get_cifar10(withlabel=False, ndim=3, scale=2) train -= 1.0 train_iter = iterators.SerialIterator(train, batch_size) z_iter = RandomNoiseIterator(GaussianNoiseGenerator(0, 1, args.nz), batch_size) optimizer_generator = optimizers.RMSprop(lr=0.00005) optimizer_critic = optimizers.RMSprop(lr=0.00005) optimizer_generator.setup(Generator()) optimizer_critic.setup(Critic()) updater = WassersteinGANUpdater( iterator=train_iter, noise_iterator=z_iter, optimizer_generator=optimizer_generator, optimizer_critic=optimizer_critic, device=gpu) trainer = training.Trainer(updater, stop_trigger=(epochs, 'epoch')) trainer.extend(extensions.ProgressBar()) trainer.extend(extensions.LogReport(trigger=(1, 'iteration'))) trainer.extend(GeneratorSample(), trigger=(1, 'epoch')) trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'critic/loss', 'critic/loss/real', 'critic/loss/fake', 'generator/loss'])) trainer.run()