Python fuel.schemes.ShuffledScheme() Examples
The following are 16
code examples of fuel.schemes.ShuffledScheme().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
fuel.schemes
, or try the search function
.
Example #1
Source File: load.py From iGAN with MIT License | 6 votes |
def load_imgs(ntrain=None, ntest=None, batch_size=128, data_file=None): t = time() print('LOADING DATASET...') path = os.path.join(data_file) tr_data = H5PYDataset(path, which_sets=('train',)) te_data = H5PYDataset(path, which_sets=('test',)) if ntrain is None: ntrain = tr_data.num_examples else: ntrain = min(ntrain, tr_data.num_examples) if ntest is None: ntest = te_data.num_examples else: ntest = min(ntest, te_data.num_examples) print('name = %s, ntrain = %d, ntest = %d' % (data_file, ntrain, ntest)) tr_scheme = ShuffledScheme(examples=ntrain, batch_size=batch_size) tr_stream = DataStream(tr_data, iteration_scheme=tr_scheme) te_scheme = ShuffledScheme(examples=ntest, batch_size=batch_size) te_stream = DataStream(te_data, iteration_scheme=te_scheme) print('%.2f secs to load data' % (time() - t)) return tr_data, te_data, tr_stream, te_stream, ntrain, ntest
Example #2
Source File: load.py From dcgan_code with MIT License | 6 votes |
def faces(ntrain=None, nval=None, ntest=None, batch_size=128): path = os.path.join(data_dir, 'faces_364293_128px.hdf5') tr_data = H5PYDataset(path, which_sets=('train',)) te_data = H5PYDataset(path, which_sets=('test',)) if ntrain is None: ntrain = tr_data.num_examples if ntest is None: ntest = te_data.num_examples if nval is None: nval = te_data.num_examples tr_scheme = ShuffledScheme(examples=ntrain, batch_size=batch_size) tr_stream = DataStream(tr_data, iteration_scheme=tr_scheme) te_scheme = SequentialScheme(examples=ntest, batch_size=batch_size) te_stream = DataStream(te_data, iteration_scheme=te_scheme) val_scheme = SequentialScheme(examples=nval, batch_size=batch_size) val_stream = DataStream(tr_data, iteration_scheme=val_scheme) return tr_data, te_data, tr_stream, val_stream, te_stream
Example #3
Source File: utils.py From blocks-char-rnn with MIT License | 5 votes |
def get_stream(hdf5_file, which_set, batch_size=None): dataset = H5PYDataset( hdf5_file, which_sets=(which_set,), load_in_memory=True) if batch_size == None: batch_size = dataset.num_examples stream = DataStream(dataset=dataset, iteration_scheme=ShuffledScheme( examples=dataset.num_examples, batch_size=batch_size)) # Required because Recurrent bricks receive as input [sequence, batch, # features] return Mapping(stream, transpose_stream)
Example #4
Source File: test_datasets.py From attention-lvcsr with MIT License | 5 votes |
def test_batch_iteration_scheme_with_lists(self): """Batch schemes should work with more than ndarrays.""" data = IndexableDataset(OrderedDict([('foo', list(range(50))), ('bar', list(range(1, 51)))])) stream = DataStream(data, iteration_scheme=ShuffledScheme(data.num_examples, 5)) returned = [sum(batches, []) for batches in zip(*list(stream.get_epoch_iterator()))] assert set(returned[0]) == set(range(50)) assert set(returned[1]) == set(range(1, 51))
Example #5
Source File: test_image.py From attention-lvcsr with MIT License | 5 votes |
def common_setup(self): ex_scheme = SequentialExampleScheme(self.dataset.num_examples) self.example_stream = DataStream(self.dataset, iteration_scheme=ex_scheme) self.batch_size = 2 scheme = ShuffledScheme(self.dataset.num_examples, batch_size=self.batch_size) self.batch_stream = DataStream(self.dataset, iteration_scheme=scheme)
Example #6
Source File: dataset.py From kerosene with MIT License | 5 votes |
def fuel_data_to_list(fuel_data, shuffle): if(shuffle): scheme = ShuffledScheme(fuel_data.num_examples, fuel_data.num_examples) else: scheme = SequentialScheme(fuel_data.num_examples, fuel_data.num_examples) fuel_data_stream = DataStream.default_stream(fuel_data, iteration_scheme=scheme) return next(fuel_data_stream.get_epoch_iterator())
Example #7
Source File: test_datasets.py From fuel with MIT License | 5 votes |
def test_batch_iteration_scheme_with_lists(self): """Batch schemes should work with more than ndarrays.""" data = IndexableDataset(OrderedDict([('foo', list(range(50))), ('bar', list(range(1, 51)))])) stream = DataStream(data, iteration_scheme=ShuffledScheme(data.num_examples, 5)) returned = [sum(batches, []) for batches in zip(*list(stream.get_epoch_iterator()))] assert set(returned[0]) == set(range(50)) assert set(returned[1]) == set(range(1, 51))
Example #8
Source File: test_image.py From fuel with MIT License | 5 votes |
def common_setup(self): ex_scheme = SequentialExampleScheme(self.dataset.num_examples) self.example_stream = DataStream(self.dataset, iteration_scheme=ex_scheme) self.batch_size = 2 scheme = ShuffledScheme(self.dataset.num_examples, batch_size=self.batch_size) self.batch_stream = DataStream(self.dataset, iteration_scheme=scheme)
Example #9
Source File: utils.py From diagnose-heart with MIT License | 5 votes |
def streamer(self, training=True, shuffled=False): n = self.ntrain if training else self.ntest if n==0: return None; func = ShuffledScheme if shuffled else SequentialScheme sch = func(examples=n, batch_size=self.batch_size) data = self.tr_data if training else self.te_data return DataStream(data, iteration_scheme = sch) # helper function for building vae's
Example #10
Source File: utils.py From diagnose-heart with MIT License | 5 votes |
def streamer(self, training=True, shuffled=False): n = self.ntrain if training else self.ntest sch = ShuffledScheme(examples=n, batch_size=self.batch_size) if shuffled else \ SequentialScheme(examples=n, batch_size=self.batch_size) return DataStream(self.tr_data if training else self.te_data, \ iteration_scheme = sch) # helper function for building vae's
Example #11
Source File: utils.py From video_predict with MIT License | 5 votes |
def streamer(self, training=True, shuffled=False): n = self.ntrain if training else self.ntest sch = ShuffledScheme(examples=n, batch_size=self.batch_size) if shuffled else \ SequentialScheme(examples=n, batch_size=self.batch_size) return DataStream(self.tr_data if training else self.te_data, \ iteration_scheme = sch) # helper function for building vae's
Example #12
Source File: streams.py From PacGAN with MIT License | 5 votes |
def create_packing_VEEGAN1200D_data_streams(num_packings, batch_size, monitoring_batch_size, rng=None, num_examples=100000, sources=('features', )): train_set = VEEGAN1200DPackingMixture(num_packings=num_packings, num_examples=num_examples, rng=rng, sources=sources) valid_set = VEEGAN1200DPackingMixture(num_packings=num_packings, num_examples=num_examples, rng=rng, sources=sources) main_loop_stream = DataStream(train_set, iteration_scheme=ShuffledScheme(train_set.num_examples, batch_size=batch_size, rng=rng)) train_monitor_stream = DataStream(train_set, iteration_scheme=ShuffledScheme(5000, batch_size, rng=rng)) valid_monitor_stream = DataStream(valid_set, iteration_scheme=ShuffledScheme(5000, batch_size, rng=rng)) return main_loop_stream, train_monitor_stream, valid_monitor_stream
Example #13
Source File: streams.py From PacGAN with MIT License | 5 votes |
def create_packing_gaussian_mixture_data_streams(num_packings, batch_size, monitoring_batch_size, means=None, variances=None, priors=None, rng=None, num_examples=100000, sources=('features', )): train_set = GaussianPackingMixture(num_packings=num_packings, num_examples=num_examples, means=means, variances=variances, priors=priors, rng=rng, sources=sources) valid_set = GaussianPackingMixture(num_packings=num_packings, num_examples=num_examples, means=means, variances=variances, priors=priors, rng=rng, sources=sources) main_loop_stream = DataStream(train_set, iteration_scheme=ShuffledScheme(train_set.num_examples, batch_size=batch_size, rng=rng)) train_monitor_stream = DataStream(train_set, iteration_scheme=ShuffledScheme(5000, batch_size, rng=rng)) valid_monitor_stream = DataStream(valid_set, iteration_scheme=ShuffledScheme(5000, batch_size, rng=rng)) return main_loop_stream, train_monitor_stream, valid_monitor_stream
Example #14
Source File: run.py From ladder with MIT License | 4 votes |
def make_datastream(dataset, indices, batch_size, n_labeled=None, n_unlabeled=None, balanced_classes=True, whiten=None, cnorm=None, scheme=ShuffledScheme): if n_labeled is None or n_labeled == 0: n_labeled = len(indices) if batch_size is None: batch_size = len(indices) if n_unlabeled is None: n_unlabeled = len(indices) assert n_labeled <= n_unlabeled, 'need less labeled than unlabeled' if balanced_classes and n_labeled < n_unlabeled: # Ensure each label is equally represented logger.info('Balancing %d labels...' % n_labeled) all_data = dataset.data_sources[dataset.sources.index('targets')] y = unify_labels(all_data)[indices] n_classes = y.max() + 1 assert n_labeled % n_classes == 0 n_from_each_class = n_labeled / n_classes i_labeled = [] for c in range(n_classes): i = (indices[y == c])[:n_from_each_class] i_labeled += list(i) else: i_labeled = indices[:n_labeled] # Get unlabeled indices i_unlabeled = indices[:n_unlabeled] ds = SemiDataStream( data_stream_labeled=Whitening( DataStream(dataset), iteration_scheme=scheme(i_labeled, batch_size), whiten=whiten, cnorm=cnorm), data_stream_unlabeled=Whitening( DataStream(dataset), iteration_scheme=scheme(i_unlabeled, batch_size), whiten=whiten, cnorm=cnorm) ) return ds
Example #15
Source File: fuel_helper.py From plat with MIT License | 4 votes |
def create_streams(train_set, valid_set, test_set, training_batch_size, monitoring_batch_size): """Creates data streams for training and monitoring. Parameters ---------- train_set : :class:`fuel.datasets.Dataset` Training set. valid_set : :class:`fuel.datasets.Dataset` Validation set. test_set : :class:`fuel.datasets.Dataset` Test set. monitoring_batch_size : int Batch size for monitoring. include_targets : bool If ``True``, use both features and targets. If ``False``, use features only. Returns ------- rval : tuple of data streams Data streams for the main loop, the training set monitor, the validation set monitor and the test set monitor. """ main_loop_stream = DataStream.default_stream( dataset=train_set, iteration_scheme=ShuffledScheme( train_set.num_examples, training_batch_size)) train_monitor_stream = DataStream.default_stream( dataset=train_set, iteration_scheme=ShuffledScheme( train_set.num_examples, monitoring_batch_size)) valid_monitor_stream = DataStream.default_stream( dataset=valid_set, iteration_scheme=SequentialScheme( valid_set.num_examples, monitoring_batch_size)) test_monitor_stream = DataStream.default_stream( dataset=test_set, iteration_scheme=SequentialScheme( test_set.num_examples, monitoring_batch_size)) return (main_loop_stream, train_monitor_stream, valid_monitor_stream, test_monitor_stream)
Example #16
Source File: utils.py From discgen with MIT License | 4 votes |
def create_streams(train_set, valid_set, test_set, training_batch_size, monitoring_batch_size): """Creates data streams for training and monitoring. Parameters ---------- train_set : :class:`fuel.datasets.Dataset` Training set. valid_set : :class:`fuel.datasets.Dataset` Validation set. test_set : :class:`fuel.datasets.Dataset` Test set. monitoring_batch_size : int Batch size for monitoring. include_targets : bool If ``True``, use both features and targets. If ``False``, use features only. Returns ------- rval : tuple of data streams Data streams for the main loop, the training set monitor, the validation set monitor and the test set monitor. """ main_loop_stream = DataStream.default_stream( dataset=train_set, iteration_scheme=ShuffledScheme( train_set.num_examples, training_batch_size)) train_monitor_stream = DataStream.default_stream( dataset=train_set, iteration_scheme=ShuffledScheme( train_set.num_examples, monitoring_batch_size)) valid_monitor_stream = DataStream.default_stream( dataset=valid_set, iteration_scheme=ShuffledScheme( valid_set.num_examples, monitoring_batch_size)) test_monitor_stream = DataStream.default_stream( dataset=test_set, iteration_scheme=ShuffledScheme( test_set.num_examples, monitoring_batch_size)) return (main_loop_stream, train_monitor_stream, valid_monitor_stream, test_monitor_stream)