Python mayavi.mlab.savefig() Examples

The following are 10 code examples of mayavi.mlab.savefig(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module mayavi.mlab , or try the search function .
Example #1
Source File: 3d_elev_animations.py    From LSDMappingTools with MIT License 6 votes vote down vote up
def run_plots(DataDirectory,Base_file):

    root = DataDirectory+Base_file
    filenames = get_filenames(root)
    counter = 0

    # create the plot for the initial raster
    initial_file = filenames[0]

    # read in the raster
    raster = IO.ReadRasterArrayBlocks(initial_file)

    f = mlab.figure(size=(1000,1000), bgcolor=(0.5,0.5,0.5))
    s = mlab.surf(raster, warp_scale=0.4, colormap='gist_earth', vmax=100)
    #mlab.outline(color=(0,0,0))

    #mlab.axes(s, color=(1,1,1), z_axis_visibility=True, y_axis_visibility=False, xlabel='', ylabel='', zlabel='', ranges=[0,500,0,1000,0,0])

    #@mlab.animate(delay=10)
    #def anim():
    # now loop through each file and update the z values
    for fname in filenames:
        this_rast = IO.ReadRasterArrayBlocks(fname)
        s.mlab_source.scalars = this_rast
        #f.scene.render()
        #
        mlab.savefig(fname[:-4]+'_3d.png')
        #mlab.clf()

    # for (x, y, z) in zip(xs, ys, zs):
    #     print('Updating scene...')
    #     plt.mlab_source.set(x=x, y=y, z=z)
    #     yield 
Example #2
Source File: electro.py    From VASPy with MIT License 5 votes vote down vote up
def plot_mcontour(self, ndim0, ndim1, z, show_mode):
        "use mayavi.mlab to plot contour."
        if not mayavi_installed:
            self.__logger.info("Mayavi is not installed on your device.")
            return
        #do 2d interpolation
        #get slice object
        s = np.s_[0:ndim0:1, 0:ndim1:1]
        x, y = np.ogrid[s]
        mx, my = np.mgrid[s]
        #use cubic 2d interpolation
        interpfunc = interp2d(x, y, z, kind='cubic')
        newx = np.linspace(0, ndim0, 600)
        newy = np.linspace(0, ndim1, 600)
        newz = interpfunc(newx, newy)
        #mlab
        face = mlab.surf(newx, newy, newz, warp_scale=2)
        mlab.axes(xlabel='x', ylabel='y', zlabel='z')
        mlab.outline(face)
        #save or show
        if show_mode == 'show':
            mlab.show()
        elif show_mode == 'save':
            mlab.savefig('mlab_contour3d.png')
        else:
            raise ValueError('Unrecognized show mode parameter : ' +
                             show_mode)

        return 
Example #3
Source File: electro.py    From VASPy with MIT License 5 votes vote down vote up
def plot_field(self, **kwargs):
        "plot scalar field for elf data"
        if not mayavi_installed:
            self.__logger.warning("Mayavi is not installed on your device.")
            return
        # set parameters
        vmin = kwargs['vmin'] if 'vmin' in kwargs else 0.0
        vmax = kwargs['vmax'] if 'vmax' in kwargs else 1.0
        axis_cut = kwargs['axis_cut'] if 'axis_cut' in kwargs else 'z'
        nct = kwargs['nct'] if 'nct' in kwargs else 5
        widths = kwargs['widths'] if 'widths' in kwargs else (1, 1, 1)
        elf_data, grid = self.expand_data(self.elf_data, self.grid, widths)
        #create pipeline
        field = mlab.pipeline.scalar_field(elf_data)  # data source
        mlab.pipeline.volume(field, vmin=vmin, vmax=vmax)  # put data into volumn to visualize
        #cut plane
        if axis_cut in ['Z', 'z']:
            plane_orientation = 'z_axes'
        elif axis_cut in ['Y', 'y']:
            plane_orientation = 'y_axes'
        elif axis_cut in ['X', 'x']:
            plane_orientation = 'x_axes'
        cut = mlab.pipeline.scalar_cut_plane(
            field.children[0], plane_orientation=plane_orientation)
        cut.enable_contours = True  # 开启等值线显示
        cut.contour.number_of_contours = nct
        mlab.show()
        #mlab.savefig('field.png', size=(2000, 2000))

        return 
Example #4
Source File: scrapers.py    From sphinx-gallery with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def mayavi_scraper(block, block_vars, gallery_conf):
    """Scrape Mayavi images.

    Parameters
    ----------
    block : tuple
        A tuple containing the (label, content, line_number) of the block.
    block_vars : dict
        Dict of block variables.
    gallery_conf : dict
        Contains the configuration of Sphinx-Gallery

    Returns
    -------
    rst : str
        The ReSTructuredText that will be rendered to HTML containing
        the images. This is often produced by :func:`figure_rst`.
    """
    from mayavi import mlab
    image_path_iterator = block_vars['image_path_iterator']
    image_paths = list()
    e = mlab.get_engine()
    for scene, image_path in zip(e.scenes, image_path_iterator):
        mlab.savefig(image_path, figure=scene)
        # make sure the image is not too large
        scale_image(image_path, image_path, 850, 999)
        if 'images' in gallery_conf['compress_images']:
            optipng(image_path, gallery_conf['compress_images_args'])
        image_paths.append(image_path)
    mlab.close(all=True)
    return figure_rst(image_paths, gallery_conf['src_dir']) 
Example #5
Source File: PostProcess.py    From florence with MIT License 5 votes vote down vote up
def PlotNewtonRaphsonConvergence(self, increment=None, figure=None, show_plot=True, save=False, filename=None):
        """Plots convergence of Newton-Raphson for a given increment"""

        if self.fem_solver is None:
            raise ValueError("FEM solver not set for post-processing")

        if increment == None:
            increment = len(self.fem_solver.NRConvergence)-1

        import matplotlib.pyplot as plt
        if figure is None:
            figure = plt.figure()

        plt.plot(np.log10(self.fem_solver.NRConvergence['Increment_'+str(increment)]),'-ko')
        axis_font = {'size':'18'}
        plt.xlabel(r'$No\;\; of\;\; Iterations$', **axis_font)
        plt.ylabel(r'$log_{10}|Residual|$', **axis_font)
        plt.grid('on')

        if save:
            if filename is None:
                warn("No filename provided. I am going to write one in the current directory")
                filename = PWD(__file__) + '/output.eps'
            plt.savefig(filename, format='eps', dpi=500)

        if show_plot:
            plt.show() 
Example #6
Source File: weights.py    From cmm with GNU General Public License v2.0 5 votes vote down vote up
def _save_all_fired(self):
        file_dialog = DirectoryDialog(action = 'open', title = 'Select Directory')
        if file_dialog.open() == OK:
            out_path = file_dialog.path
            if self.display_all:
                items = [(None, k) for k in xrange(self._max_weight + 1)]
            else:
                items = product(self._names, xrange(self._max_weight + 1))
            for name, k in items:
                if name is not None:
                    self.selected_mesh = name
                self.weight_index = k
                mlab.savefig(path.join(out_path, "%s_%03d.png" % (name, k))) 
Example #7
Source File: electro.py    From VASPy with MIT License 4 votes vote down vote up
def plot_contour(self, ndim0, ndim1, z, show_mode):
        '''
        ndim0: int, point number on x-axis
        ndim1: int, point number on y-axis
        z    : 2darray, values on plane perpendicular to z axis
        '''
        #do 2d interpolation
        #get slice object
        s = np.s_[0:ndim0:1, 0:ndim1:1]
        x, y = np.ogrid[s]
        self.__logger.info('z shape = %s, x shape = %s, y shape = %s',
                           str(z.shape), str(x.shape), str(y.shape))
        mx, my = np.mgrid[s]
        #use cubic 2d interpolation
        interpfunc = interp2d(x, y, z, kind='cubic')
        newx = np.linspace(0, ndim0, 600)
        newy = np.linspace(0, ndim1, 600)
        #-----------for plot3d---------------------
        ms = np.s_[0:ndim0:600j, 0:ndim1:600j]  # |
        newmx, newmy = np.mgrid[ms]             # |
        #-----------for plot3d---------------------
        newz = interpfunc(newx, newy)

        #plot 2d contour map
        fig2d_1, fig2d_2, fig2d_3 = plt.figure(), plt.figure(), plt.figure()
        ax1 = fig2d_1.add_subplot(1, 1, 1)
        extent = [np.min(newx), np.max(newx), np.min(newy), np.max(newy)]
        img = ax1.imshow(newz, extent=extent, origin='lower')
        #coutour plot
        ax2 = fig2d_2.add_subplot(1, 1, 1)
        cs = ax2.contour(newx.reshape(-1), newy.reshape(-1), newz, 20, extent=extent)
        ax2.clabel(cs)
        plt.colorbar(mappable=img)
        # contourf plot
        ax3 = fig2d_3.add_subplot(1, 1, 1)
        ax3.contourf(newx.reshape(-1), newy.reshape(-1), newz, 20, extent=extent)

        #3d plot
        fig3d = plt.figure(figsize=(12, 8))
        ax3d = fig3d.add_subplot(111, projection='3d')
        ax3d.plot_surface(newmx, newmy, newz, cmap=plt.cm.RdBu_r)

        #save or show
        if show_mode == 'show':
            plt.show()
        elif show_mode == 'save':
            fig2d_1.savefig('surface2d.png', dpi=500)
            fig2d_2.savefig('contour2d.png', dpi=500)
            fig2d_3.savefig('contourf2d.png', dpi=500)
            fig3d.savefig('surface3d.png', dpi=500)
        else:
            raise ValueError('Unrecognized show mode parameter : ' +
                             show_mode)

        return 
Example #8
Source File: read_grasps_from_file.py    From PointNetGPD with MIT License 4 votes vote down vote up
def show_selected_grasps_with_color(m, ply_name_, title, obj_):
    m_good = m[m[:, 1] <= 0.4]
    m_good = m_good[np.random.choice(len(m_good), size=25, replace=True)]
    m_bad = m[m[:, 1] >= 1.8]
    m_bad = m_bad[np.random.choice(len(m_bad), size=25, replace=True)]
    collision_grasp_num = 0

    if save_fig or show_fig:
        # fig 1: good grasps
        mlab.figure(bgcolor=(1, 1, 1), fgcolor=(0.7, 0.7, 0.7), size=(1000, 1000))
        mlab.pipeline.surface(mlab.pipeline.open(ply_name_))
        for a in m_good:
            # display_gripper_on_object(obj, a[0])  # real gripper
            collision_free = display_grasps(a[0], obj_, color='d')  # simulated gripper
            if not collision_free:
                collision_grasp_num += 1

        if save_fig:
            mlab.savefig("good_"+title+".png")
            mlab.close()
        elif show_fig:
            mlab.title(title, size=0.5)

        # fig 2: bad grasps
        mlab.figure(bgcolor=(1, 1, 1), fgcolor=(0.7, 0.7, 0.7), size=(1000, 1000))
        mlab.pipeline.surface(mlab.pipeline.open(ply_name_))

        for a in m_bad:
            # display_gripper_on_object(obj, a[0])  # real gripper
            collision_free = display_grasps(a[0], obj_, color=(1, 0, 0))
            if not collision_free:
                collision_grasp_num += 1

        if save_fig:
            mlab.savefig("bad_"+title+".png")
            mlab.close()
        elif show_fig:
            mlab.title(title, size=0.5)
            mlab.show()
    elif generate_new_file:
        # only to calculate collision:
        collision_grasp_num = 0
        ind_good_grasp_ = []
        for i_ in range(len(m)):
            collision_free = display_grasps(m[i_][0], obj_, color=(1, 0, 0))
            if not collision_free:
                collision_grasp_num += 1
            else:
                ind_good_grasp_.append(i_)
        collision_grasp_num = str(collision_grasp_num)
        collision_grasp_num = (4-len(collision_grasp_num))*" " + collision_grasp_num
        print("collision_grasp_num =", collision_grasp_num, "| object name:", title)
        return ind_good_grasp_ 
Example #9
Source File: gen_rst.py    From spectrum with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def save_figures(image_path, fig_count, gallery_conf):
    """Save all open matplotlib figures of the example code-block

    Parameters
    ----------
    image_path : str
        Path where plots are saved (format string which accepts figure number)
    fig_count : int
        Previous figure number count. Figure number add from this number

    Returns
    -------
    list of strings containing the full path to each figure
    """
    figure_list = []

    fig_managers = matplotlib._pylab_helpers.Gcf.get_all_fig_managers()
    for fig_mngr in fig_managers:
        # Set the fig_num figure as the current figure as we can't
        # save a figure that's not the current figure.
        fig = plt.figure(fig_mngr.num)
        kwargs = {}
        to_rgba = matplotlib.colors.colorConverter.to_rgba
        for attr in ['facecolor', 'edgecolor']:
            fig_attr = getattr(fig, 'get_' + attr)()
            default_attr = matplotlib.rcParams['figure.' + attr]
            if to_rgba(fig_attr) != to_rgba(default_attr):
                kwargs[attr] = fig_attr

        current_fig = image_path.format(fig_count + fig_mngr.num)
        fig.savefig(current_fig, **kwargs)
        figure_list.append(current_fig)

    if gallery_conf.get('find_mayavi_figures', False):
        from mayavi import mlab
        e = mlab.get_engine()
        last_matplotlib_fig_num = len(figure_list)
        total_fig_num = last_matplotlib_fig_num + len(e.scenes)
        mayavi_fig_nums = range(last_matplotlib_fig_num, total_fig_num)

        for scene, mayavi_fig_num in zip(e.scenes, mayavi_fig_nums):
            current_fig = image_path.format(mayavi_fig_num)
            mlab.savefig(current_fig, figure=scene)
            # make sure the image is not too large
            scale_image(current_fig, current_fig, 850, 999)
            figure_list.append(current_fig)
        mlab.close(all=True)

    return figure_list 
Example #10
Source File: structure_plot.py    From PyChemia with MIT License 4 votes vote down vote up
def plot(self, figname=None, size=(300, 325), view=(30, 30), color=(1.0, 1.0, 1.0)):

        fig = mlab.figure(size=size)
        figure = mlab.gcf()
        fig.scene.disable_render = True
        figure.scene.background = (0.0, 0.0, 0.0)
        mlab.view(0, 90, distance=0.2)
        assert (self.structure.natom > 0)

        x = self.structure.positions[:, 0]
        y = self.structure.positions[:, 1]
        z = self.structure.positions[:, 2]
        cr = covalent_radius(self.structure.symbols)
        s = np.apply_along_axis(np.linalg.norm, 1, self.structure.positions)

        mlab.points3d(x, y, z, s, scale_factor=1.0, resolution=8, opacity=1.0,
                      color=color,
                      scale_mode='none')

        if self.structure.is_crystal:
            frame, line1, line2, line3 = self.structure.get_cell().get_path()

            mlab.plot3d(frame[:, 0], frame[:, 1], frame[:, 2], tube_radius=.02, color=(1, 1, 1))
            mlab.plot3d(line1[:, 0], line1[:, 1], line1[:, 2], tube_radius=.02, color=(1, 1, 1))
            mlab.plot3d(line2[:, 0], line2[:, 1], line2[:, 2], tube_radius=.02, color=(1, 1, 1))
            mlab.plot3d(line3[:, 0], line3[:, 1], line3[:, 2], tube_radius=.02, color=(1, 1, 1))
        else:
            for i in range(self.structure.natom - 1):
                for j in range(i + 1, self.structure.natom):
                    vector = self.structure.positions[i] - self.structure.positions[j]
                    mvector = np.linalg.norm(vector)
                    uvector = 1.0 / mvector * vector
                    if 2 * mvector < covalent_radius(self.structure.symbols[i]) + \
                            covalent_radius(self.structure.symbols[j]):
                        pair = np.concatenate(
                            (self.structure.positions[i] - 0.1 * uvector,
                             self.structure.positions[j] + 0.1 * uvector)).reshape((-1, 3))
                        mlab.plot3d(pair[:, 0], pair[:, 1], pair[:, 2], tube_radius=0.15, opacity=1.0, color=(1, 1, 1))

        mlab.view(distance=12.0)
        fig.scene.disable_render = False
        if figname is not None:
            mlab.savefig(figname)
        return figure