Python multiprocess.Pool() Examples

The following are 12 code examples of multiprocess.Pool(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module multiprocess , or try the search function .
Example #1
Source File: data_builder.py    From PreSumm with MIT License 6 votes vote down vote up
def format_to_bert(args):
    if (args.dataset != ''):
        datasets = [args.dataset]
    else:
        datasets = ['train', 'valid', 'test']
    for corpus_type in datasets:
        a_lst = []
        for json_f in glob.glob(pjoin(args.raw_path, '*' + corpus_type + '.*.json')):
            real_name = json_f.split('/')[-1]
            a_lst.append((corpus_type, json_f, args, pjoin(args.save_path, real_name.replace('json', 'bert.pt'))))
        print(a_lst)
        pool = Pool(args.n_cpus)
        for d in pool.imap(_format_to_bert, a_lst):
            pass

        pool.close()
        pool.join() 
Example #2
Source File: data_builder.py    From BertSum with Apache License 2.0 6 votes vote down vote up
def format_to_bert(args):
    if (args.dataset != ''):
        datasets = [args.dataset]
    else:
        datasets = ['train', 'valid', 'test']
    for corpus_type in datasets:
        a_lst = []
        for json_f in glob.glob(pjoin(args.raw_path, '*' + corpus_type + '.*.json')):
            real_name = json_f.split('/')[-1]
            a_lst.append((json_f, args, pjoin(args.save_path, real_name.replace('json', 'bert.pt'))))
        print(a_lst)
        pool = Pool(args.n_cpus)
        for d in pool.imap(_format_to_bert, a_lst):
            pass

        pool.close()
        pool.join() 
Example #3
Source File: data_builder.py    From PreSumm with MIT License 5 votes vote down vote up
def format_xsum_to_lines(args):
    if (args.dataset != ''):
        datasets = [args.dataset]
    else:
        datasets = ['train', 'test', 'valid']

    corpus_mapping = json.load(open(pjoin(args.raw_path, 'XSum-TRAINING-DEV-TEST-SPLIT-90-5-5.json')))

    for corpus_type in datasets:
        mapped_fnames = corpus_mapping[corpus_type]
        root_src = pjoin(args.raw_path, 'restbody')
        root_tgt = pjoin(args.raw_path, 'firstsentence')
        # realnames = [fname.split('.')[0] for fname in os.listdir(root_src)]
        realnames = mapped_fnames

        a_lst = [(root_src, root_tgt, n) for n in realnames]
        pool = Pool(args.n_cpus)
        dataset = []
        p_ct = 0
        for d in pool.imap_unordered(_format_xsum_to_lines, a_lst):
            if (d is None):
                continue
            dataset.append(d)
            if (len(dataset) > args.shard_size):
                pt_file = "{:s}.{:s}.{:d}.json".format(args.save_path, corpus_type, p_ct)
                with open(pt_file, 'w') as save:
                    save.write(json.dumps(dataset))
                    p_ct += 1
                    dataset = []

        pool.close()
        pool.join()
        if (len(dataset) > 0):
            pt_file = "{:s}.{:s}.{:d}.json".format(args.save_path, corpus_type, p_ct)
            with open(pt_file, 'w') as save:
                save.write(json.dumps(dataset))
                p_ct += 1
                dataset = [] 
Example #4
Source File: catalog.py    From GASpy with GNU Lesser General Public License v3.0 5 votes vote down vote up
def update_catalog_collection(elements, max_miller, n_processes=1, mp_query=None):
    '''
    This function will add enumerate and add adsorption sites to our `catalog`
    Mongo collection.

    Args:
        elements        A list of strings indicating the elements you are
                        looking for, e.g., ['Cu', 'Al']
        max_miller      An integer indicating the maximum Miller index to be
                        enumerated
        n_processes     An integer indicating how many threads you want to use
                        when running the tasks. If you do not expect many
                        updates, stick to the default of 1, or go up to 4. If
                        you are re-creating your collection from scratch, you
                        may want to want to increase this argument as high as
                        you can.
        mp_query        We get our bulks from The Materials Project. This
                        dictionary argument is used as a Mongo query to The
                        Materials Project Database. If you do not supply this
                        argument, then it will automatically filter out bulks
                        whose energies above the hull are greater than 0.1 eV
                        and whose formation energy per atom are above 0 eV.
    '''
    # Python doesn't like mutable arguments
    if mp_query is None:
        mp_query = {}

    # Figure out the MPIDs we need to enumerate
    get_mpid_task = _GetMpids(elements=elements, mp_query=mp_query)
    schedule_tasks([get_mpid_task])
    mpids = get_task_output(get_mpid_task)

    # For each MPID, enumerate all the sites and then add them to our `catalog`
    # Mongo collection. Do this in parallel because it can be.
    if n_processes > 1:
        with multiprocess.Pool(n_processes) as pool:
            list(pool.imap(func=lambda mpid: __run_insert_to_catalog_task(mpid, max_miller),
                           iterable=mpids, chunksize=20))
    else:
        for mpid in mpids:
            __run_insert_to_catalog_task(mpid, max_miller) 
Example #5
Source File: parallel.py    From quantum-honeycomp with GNU General Public License v3.0 5 votes vote down vote up
def Pool(n=1): # workaround
            class mpool():
                def map(self,f,xs):
                  return [f(x) for x in xs]
                def terminate(self): return None # dummy function
            return mpool() 
Example #6
Source File: parallel.py    From quantum-honeycomp with GNU General Public License v3.0 5 votes vote down vote up
def set_cores(n=1):
    global cores
    cores = n


#mainpool = None

#def initialize(): 
#  global mainpool
#  if cores>1:
#    mainpool = Pool(cores) # create pool
#  return mainpool

#def finish(): mainpool=None # delete pool 
Example #7
Source File: parallel.py    From quantum-honeycomp with GNU General Public License v3.0 5 votes vote down vote up
def pcall_mp(fun,args,cores=cores):
    """Calls a function for every input in args"""
    mainpool = Pool(cores) # create pool
#    print("Using",cores,"cores")
    out = mainpool.map(fun,args) # return list
    mainpool.terminate() # clear the pool
    del mainpool # delete pool
    return out
#except:
#  print("Multiprocessing not found, running in a single core")
#  def pcall_mp(fun,args,cores=1): return pcall_serial(fun,args) 
Example #8
Source File: data_builder.py    From PreSumm with MIT License 4 votes vote down vote up
def format_to_lines(args):
    corpus_mapping = {}
    for corpus_type in ['valid', 'test', 'train']:
        temp = []
        for line in open(pjoin(args.map_path, 'mapping_' + corpus_type + '.txt')):
            temp.append(hashhex(line.strip()))
        corpus_mapping[corpus_type] = {key.strip(): 1 for key in temp}
    train_files, valid_files, test_files = [], [], []
    for f in glob.glob(pjoin(args.raw_path, '*.json')):
        real_name = f.split('/')[-1].split('.')[0]
        if (real_name in corpus_mapping['valid']):
            valid_files.append(f)
        elif (real_name in corpus_mapping['test']):
            test_files.append(f)
        elif (real_name in corpus_mapping['train']):
            train_files.append(f)
        # else:
        #     train_files.append(f)

    corpora = {'train': train_files, 'valid': valid_files, 'test': test_files}
    for corpus_type in ['train', 'valid', 'test']:
        a_lst = [(f, args) for f in corpora[corpus_type]]
        pool = Pool(args.n_cpus)
        dataset = []
        p_ct = 0
        for d in pool.imap_unordered(_format_to_lines, a_lst):
            dataset.append(d)
            if (len(dataset) > args.shard_size):
                pt_file = "{:s}.{:s}.{:d}.json".format(args.save_path, corpus_type, p_ct)
                with open(pt_file, 'w') as save:
                    # save.write('\n'.join(dataset))
                    save.write(json.dumps(dataset))
                    p_ct += 1
                    dataset = []

        pool.close()
        pool.join()
        if (len(dataset) > 0):
            pt_file = "{:s}.{:s}.{:d}.json".format(args.save_path, corpus_type, p_ct)
            with open(pt_file, 'w') as save:
                # save.write('\n'.join(dataset))
                save.write(json.dumps(dataset))
                p_ct += 1
                dataset = [] 
Example #9
Source File: data_builder.py    From BertSum with Apache License 2.0 4 votes vote down vote up
def format_to_lines(args):
    corpus_mapping = {}
    for corpus_type in ['valid', 'test', 'train']:
        temp = []
        for line in open(pjoin(args.map_path, 'mapping_' + corpus_type + '.txt')):
            temp.append(hashhex(line.strip()))
        corpus_mapping[corpus_type] = {key.strip(): 1 for key in temp}
    train_files, valid_files, test_files = [], [], []
    for f in glob.glob(pjoin(args.raw_path, '*.json')):
        real_name = f.split('/')[-1].split('.')[0]
        if (real_name in corpus_mapping['valid']):
            valid_files.append(f)
        elif (real_name in corpus_mapping['test']):
            test_files.append(f)
        elif (real_name in corpus_mapping['train']):
            train_files.append(f)

    corpora = {'train': train_files, 'valid': valid_files, 'test': test_files}
    for corpus_type in ['train', 'valid', 'test']:
        a_lst = [(f, args) for f in corpora[corpus_type]]
        pool = Pool(args.n_cpus)
        dataset = []
        p_ct = 0
        for d in pool.imap_unordered(_format_to_lines, a_lst):
            dataset.append(d)
            if (len(dataset) > args.shard_size):
                pt_file = "{:s}.{:s}.{:d}.json".format(args.save_path, corpus_type, p_ct)
                with open(pt_file, 'w') as save:
                    # save.write('\n'.join(dataset))
                    save.write(json.dumps(dataset))
                    p_ct += 1
                    dataset = []

        pool.close()
        pool.join()
        if (len(dataset) > 0):
            pt_file = "{:s}.{:s}.{:d}.json".format(args.save_path, corpus_type, p_ct)
            with open(pt_file, 'w') as save:
                # save.write('\n'.join(dataset))
                save.write(json.dumps(dataset))
                p_ct += 1
                dataset = [] 
Example #10
Source File: cload.py    From cooler with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def tabix(bins, pairs_path, cool_path, metadata, assembly, nproc, zero_based, max_split, **kwargs):
    """
    Bin a tabix-indexed contact list file.

    {}

    See also: 'cooler csort' to sort and index a contact list file

    Tabix manpage: <http://www.htslib.org/doc/tabix.html>.

    """
    logger = get_logger(__name__)
    chromsizes, bins = parse_bins(bins)

    if metadata is not None:
        with open(metadata, 'r') as f:
            metadata = json.load(f)

    try:
        if nproc > 1:
            pool = Pool(nproc)
            logger.info("Using {} cores".format(nproc))
            map = pool.imap
        else:
            map = six.moves.map

        opts = {}
        if 'chrom2' in kwargs:
            opts['C2'] = kwargs['chrom2'] - 1
        if 'pos2' in kwargs:
            opts['P2'] = kwargs['pos2'] - 1

        iterator = TabixAggregator(
            pairs_path,
            chromsizes,
            bins,
            map=map,
            is_one_based=(not zero_based),
            n_chunks=max_split,
            **opts
        )

        create_cooler(
            cool_path, bins, iterator,
            metadata=metadata,
            assembly=assembly,
            ordered=True)
    finally:
        if nproc > 1:
            pool.close() 
Example #11
Source File: cload.py    From cooler with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def pairix(bins, pairs_path, cool_path, metadata, assembly, nproc, zero_based, max_split):
    """
    Bin a pairix-indexed contact list file.

    {}

    See also: 'cooler csort' to sort and index a contact list file

    Pairix on GitHub: <https://github.com/4dn-dcic/pairix>.

    """
    logger = get_logger(__name__)
    chromsizes, bins = parse_bins(bins)

    if metadata is not None:
        with open(metadata, 'r') as f:
            metadata = json.load(f)

    try:
        if nproc > 1:
            pool = Pool(nproc)
            logger.info("Using {} cores".format(nproc))
            map = pool.imap
        else:
            map = six.moves.map

        iterator = PairixAggregator(
            pairs_path,
            chromsizes,
            bins,
            map=map,
            is_one_based=(not zero_based),
            n_chunks=max_split)

        create_cooler(
            cool_path, bins, iterator,
            metadata=metadata,
            assembly=assembly,
            ordered=True)
    finally:
        if nproc > 1:
            pool.close() 
Example #12
Source File: utils.py    From GASpy with GNU Lesser General Public License v3.0 4 votes vote down vote up
def multimap(function, inputs, chunked=False, processes=32, maxtasksperchild=1,
             chunksize=1, n_calcs=None):
    '''
    This function is a wrapper to parallelize a function.

    Args:
        function            The function you want to execute
        inputs              An iterable that yields proper arguments to the
                            function
        chunked             A Boolean indicating whether your function expects
                            single arguments or "chunked" iterables, e.g.,
                            lists.
        processes           The number of threads/processes you want to be using
        maxtasksperchild    The maximum number of tasks that a child process
                            may do before terminating (and therefore clearing
                            its memory cache to avoid memory overload).
        chunksize           How many calculations you want to have each single
                            processor do per task. Smaller chunks means more
                            memory shuffling. Bigger chunks means more RAM
                            requirements.
        n_calcs             How many calculations you have. Only necessary for
                            adding a percentage timer to the progress bar.
    Returns:
        outputs     A list of the inputs mapped through the function
    '''
    # Collect garbage before we begin multiprocessing to make sure we don't
    # pass things we don't need to
    gc.collect()

    # If we have one thread, there's no use multiprocessing
    if processes == 1:
        output = [function(input_) for input_ in tqdm(inputs, total=n_calcs)]
        return output

    with Pool(processes=processes, maxtasksperchild=maxtasksperchild) as pool:
        # Use multiprocessing to perform the calculations. We use imap instead
        # of map so that we get an iterator, which we need for tqdm (the
        # progress bar) to work. imap also requires less disk memory, which
        # can be an issue for some of our large systems.
        if not chunked:
            iterator = pool.imap(function, inputs, chunksize=chunksize)
            total = n_calcs
            outputs = list(tqdm(iterator, total=total))

        # If our function expects chunks, then we have to unpack our inputs
        # appropriately
        else:
            iterator = pool.imap(function, _chunk(inputs, n=chunksize))
            total = n_calcs / chunksize
            outputs = list(np.concatenate(list(tqdm(iterator, total=total))))

    return outputs