Python model.create_model() Examples

The following are 10 code examples of model.create_model(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module model , or try the search function .
Example #1
Source File: demo.py    From pytorch-pose-hg-3d with GNU General Public License v3.0 6 votes vote down vote up
def main(opt):
  opt.heads['depth'] = opt.num_output
  if opt.load_model == '':
    opt.load_model = '../models/fusion_3d_var.pth'
  if opt.gpus[0] >= 0:
    opt.device = torch.device('cuda:{}'.format(opt.gpus[0]))
  else:
    opt.device = torch.device('cpu')
  
  model, _, _ = create_model(opt)
  model = model.to(opt.device)
  model.eval()

  if os.path.isdir(opt.demo):
    ls = os.listdir(opt.demo)
    for file_name in sorted(ls):
      if is_image(file_name):
        image_name = os.path.join(opt.demo, file_name)
        print('Running {} ...'.format(image_name))
        image = cv2.imread(image_name)
        demo_image(image, model, opt)
  elif is_image(opt.demo):
    print('Running {} ...'.format(opt.demo))
    image = cv2.imread(opt.demo)
    demo_image(image, model, opt) 
Example #2
Source File: task.py    From cloudml-edge-automation with Apache License 2.0 5 votes vote down vote up
def main(_):
  model, argv = model_lib.create_model()
  run(model, argv) 
Example #3
Source File: task.py    From cloudml-samples with Apache License 2.0 5 votes vote down vote up
def main(_):
  model, argv = model_lib.create_model()
  run(model, argv) 
Example #4
Source File: solvers.py    From ganimation_replicate with MIT License 5 votes vote down vote up
def init_train_setting(self):
        self.train_dataset = create_dataloader(self.opt)
        self.train_model = create_model(self.opt)

        self.train_total_steps = 0
        self.epoch_len = self.opt.niter + self.opt.niter_decay
        self.cur_lr = self.opt.lr 
Example #5
Source File: solvers.py    From ganimation_replicate with MIT License 5 votes vote down vote up
def init_test_setting(self, opt):
        self.test_dataset = create_dataloader(opt)
        self.test_model = create_model(opt) 
Example #6
Source File: predict.py    From funcom with GNU General Public License v3.0 5 votes vote down vote up
def load_model_from_weights(modelpath, modeltype, datvocabsize, comvocabsize, smlvocabsize, datlen, comlen, smllen):
    config = dict()
    config['datvocabsize'] = datvocabsize
    config['comvocabsize'] = comvocabsize
    config['datlen'] = datlen # length of the data
    config['comlen'] = comlen # comlen sent us in workunits
    config['smlvocabsize'] = smlvocabsize
    config['smllen'] = smllen

    model = create_model(modeltype, config)
    model.load_weights(modelpath)
    return model 
Example #7
Source File: test.py    From Image-Caption-Generator with MIT License 5 votes vote down vote up
def predict(image_name,
            data_dir="/home/shagun/projects/Image-Caption-Generator/data/",
            weights_path=None,
            mode="test"):
    '''Method to predict the caption for a given image.
    weights_path is the path to the .h5 file (model)'''

    image_path = data_dir + "images/" + image_name
    vgg_model = load_vgg16()
    vgg_embedding = vgg_model.predict(
        load_image(image_path)
    )
    image_embeddings = [vgg_embedding]

    config_dict = generate_config(data_dir=data_dir,
                                  mode=mode)
    print(config_dict)

    model = create_model(config_dict=config_dict,
                         compile_model=False)

    model.load_weights(data_dir + "model/" + weights_path)

    tokenizer = get_tokenizer(config_dict=config_dict,
                              data_dir=data_dir)

    index_to_word = {v: k for k, v in tokenizer.word_index.items()}

    for image_embedding in image_embeddings:
        gen_captions(config=config_dict,
                     model=model,
                     image_embedding=image_embedding,
                     tokenizer=tokenizer,
                     num_captions=2,
                     index_to_word=index_to_word
                     ) 
Example #8
Source File: task.py    From cloudml-samples with Apache License 2.0 4 votes vote down vote up
def train_and_evaluate(args):
  model = model_lib.create_model(args)
  env = json.loads(os.environ.get('TF_CONFIG', '{}'))

  # Print the job data as provided by the service.
  logging.info('Original job data: %s', env.get('job', {}))

  # First find out if there's a task value on the environment variable.
  # If there is none or it is empty define a default one.
  task_data = env.get('task', None) or {'type': 'master', 'index': 0}
  task = type('TaskSpec', (object,), task_data)
  trial = task_data.get('trial')
  if trial is not None:
    args.output_path = os.path.join(args.output_path, trial)
  if args.write_to_tmp and args.output_path.startswith('gs://'):
    output_path = args.output_path
    args.output_path = os.path.join('/tmp/', str(uuid.uuid4()))
    os.makedirs(args.output_path)
  else:
    output_path = None

  if args.copy_train_data_to_tmp:
    args.train_data_paths = copy_data_to_tmp(args.train_data_paths)
  if args.copy_eval_data_to_tmp:
    args.eval_data_paths = copy_data_to_tmp(args.eval_data_paths)

  if not args.eval_batch_size:
    # If eval_batch_size not set, use min of batch_size and eval_set_size
    args.eval_batch_size = min(args.batch_size, args.eval_set_size)
    logging.info("setting eval batch size to %s", args.eval_batch_size)

  cluster_data = env.get('cluster', None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
  if args.write_predictions:
    write_predictions(args, model, cluster, task)
  else:
    dispatch(args, model, cluster, task)

  if output_path and (not cluster or not task or task.type == 'master'):
    subprocess.check_call([
        'gsutil', '-m', '-q', 'cp', '-r', args.output_path + '/*', output_path
    ])
    shutil.rmtree(args.output_path, ignore_errors=True) 
Example #9
Source File: predict.py    From recipe-summarization with MIT License 4 votes vote down vote up
def main(sample_str=None):
    """Predict a title for a recipe."""
    # load model parameters used for training
    with open(path.join(path_models, 'model_params.json'), 'r') as f:
        model_params = json.load(f)

    # create placeholder model
    model = create_model(**model_params)

    # load weights from training run
    load_weights(model, path.join(path_models, '{}.hdf5'.format(FN1)))

    # load recipe titles and descriptions
    with open(path.join(path_data, 'vocabulary-embedding.data.pkl'), 'rb') as fp:
        X_data, Y_data = pickle.load(fp)

    # load vocabulary
    with open(path.join(path_data, '{}.pkl'.format(FN0)), 'rb') as fp:
        embedding, idx2word, word2idx, glove_idx2idx = pickle.load(fp)
    vocab_size, embedding_size = embedding.shape
    oov0 = vocab_size - nb_unknown_words

    if sample_str is None:
        # load random recipe description if none provided
        i = np.random.randint(len(X_data))
        sample_str = ''
        sample_title = ''
        for w in X_data[i]:
            sample_str += idx2word[w] + ' '
        for w in Y_data[i]:
            sample_title += idx2word[w] + ' '
        y = Y_data[i]
        print('Randomly sampled recipe:')
        print(sample_title)
        print(sample_str)
    else:
        sample_title = ''
        y = [eos]

    x = [word2idx[w.rstrip('^')] for w in sample_str.split()]

    samples = gensamples(
        skips=2,
        k=1,
        batch_size=2,
        short=False,
        temperature=1.,
        use_unk=True,
        model=model,
        data=(x, y),
        idx2word=idx2word,
        oov0=oov0,
        glove_idx2idx=glove_idx2idx,
        vocab_size=vocab_size,
        nb_unknown_words=nb_unknown_words,
    )

    headline = samples[0][0][len(samples[0][1]):]
    ' '.join(idx2word[w] for w in headline) 
Example #10
Source File: train.py    From Image-Caption-Generator with MIT License 4 votes vote down vote up
def train(batch_size=128,
          epochs=100,
          data_dir="/home/shagun/projects/Image-Caption-Generator/data/",
          weights_path=None,
          mode="train"):
    '''Method to train the image caption generator
    weights_path is the path to the .h5 file where weights from the previous
    run are saved (if available)'''

    config_dict = generate_config(data_dir=data_dir,
                                  mode=mode)
    config_dict['batch_size'] = batch_size
    steps_per_epoch = config_dict["total_number_of_examples"] // batch_size

    print("steps_per_epoch = ", steps_per_epoch)
    train_data_generator = debug_generator(config_dict=config_dict,
                                           data_dir=data_dir)

    model = create_model(config_dict=config_dict)

    if weights_path:
        model.load_weights(weights_path)

    file_name = data_dir + "model/weights-{epoch:02d}.hdf5"
    checkpoint = ModelCheckpoint(filepath=file_name,
                                 monitor='loss',
                                 verbose=1,
                                 save_best_only=True,
                                 mode='min')
    tensorboard = TensorBoard(log_dir='../logs',
                              histogram_freq=0,
                              batch_size=batch_size,
                              write_graph=True,
                              write_grads=True,
                              write_images=False,
                              embeddings_freq=0,
                              embeddings_layer_names=None,
                              embeddings_metadata=None)

    callbacks_list = [checkpoint, tensorboard]
    model.fit_generator(
        generator=train_data_generator,
        steps_per_epoch=steps_per_epoch,
        epochs=epochs,
        verbose=2,
        callbacks=callbacks_list)