Python model.build_model() Examples
The following are 12
code examples of model.build_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
model
, or try the search function
.
Example #1
Source File: main.py From reid_baseline_with_syncbn with MIT License | 6 votes |
def train(args): if args.config_file != "": cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir and not os.path.exists(output_dir): os.makedirs(output_dir) shutil.copy(args.config_file, cfg.OUTPUT_DIR) num_gpus = torch.cuda.device_count() logger = setup_logger('reid_baseline', output_dir, 0) logger.info('Using {} GPUS'.format(num_gpus)) logger.info(args) logger.info('Running with config:\n{}'.format(cfg)) train_dl, val_dl, num_query, num_classes = make_dataloader(cfg, num_gpus) model = build_model(cfg, num_classes) loss_func = make_loss(cfg, num_classes) trainer = BaseTrainer(cfg, model, train_dl, val_dl, loss_func, num_query, num_gpus) for epoch in range(trainer.epochs): for batch in trainer.train_dl: trainer.step(batch) trainer.handle_new_batch() trainer.handle_new_epoch()
Example #2
Source File: train.py From WaveRNN-Pytorch with MIT License | 6 votes |
def test_eval(): data_root = "data_dir" dataset = AudiobookDataset(data_root) if hp.input_type == 'raw': collate_fn = raw_collate elif hp.input_type == 'bits': collate_fn = discrete_collate else: raise ValueError("input_type:{} not supported".format(hp.input_type)) data_loader = DataLoader(dataset, collate_fn=collate_fn, shuffle=True, num_workers=0, batch_size=hp.batch_size) device = torch.device("cuda" if use_cuda else "cpu") print("using device:{}".format(device)) # build model, create optimizer model = build_model().to(device) evaluate_model(model, data_loader)
Example #3
Source File: test_cifar.py From NAO with GNU General Public License v3.0 | 6 votes |
def get_test_ops(x, y, params, reuse=False): with tf.device('/gpu:0'): inputs = tf.reshape(x, [-1, _HEIGHT, _WIDTH, _DEPTH]) labels = y res = model.build_model(inputs, params, False, reuse) logits = res['logits'] cross_entropy = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) # Add weight decay to the loss. loss = cross_entropy + params['weight_decay'] * tf.add_n( [tf.nn.l2_loss(v) for v in tf.trainable_variables()]) if 'aux_logits' in res: aux_logits = res['aux_logits'] aux_loss = tf.losses.softmax_cross_entropy( logits=aux_logits, onehot_labels=labels, weights=params['aux_head_weight']) loss += aux_loss predictions = tf.argmax(logits, axis=1) labels = tf.argmax(y, axis=1) test_accuracy = tf.reduce_mean(tf.cast(tf.equal(predictions, labels), dtype=tf.float32)) return loss, test_accuracy
Example #4
Source File: train_cifar.py From NAO with GNU General Public License v3.0 | 6 votes |
def get_valid_ops(x, y, params, reuse=False): with tf.device('/gpu:0'): inputs = tf.reshape(x, [-1, _HEIGHT, _WIDTH, _DEPTH]) labels = y res = model.build_model(inputs, params, False, reuse) logits = res['logits'] cross_entropy = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) # Add weight decay to the loss. loss = cross_entropy + params['weight_decay'] * tf.add_n( [tf.nn.l2_loss(v) for v in tf.trainable_variables()]) if 'aux_logits' in res: aux_logits = res['aux_logits'] aux_loss = tf.losses.softmax_cross_entropy( logits=aux_logits, onehot_labels=labels, weights=params['aux_head_weight']) loss += aux_loss predictions = tf.argmax(logits, axis=1) labels = tf.argmax(y, axis=1) valid_accuracy = tf.reduce_mean(tf.cast(tf.equal(predictions, labels), dtype=tf.float32)) return loss, valid_accuracy
Example #5
Source File: train_cifar.py From NAO with GNU General Public License v3.0 | 6 votes |
def get_test_ops(x, y, params, reuse=False): with tf.device('/gpu:0'): inputs = tf.reshape(x, [-1, _HEIGHT, _WIDTH, _DEPTH]) labels = y res = model.build_model(inputs, params, False, reuse) logits = res['logits'] cross_entropy = tf.losses.softmax_cross_entropy( logits=logits, onehot_labels=labels) # Add weight decay to the loss. loss = cross_entropy + params['weight_decay'] * tf.add_n( [tf.nn.l2_loss(v) for v in tf.trainable_variables()]) if 'aux_logits' in res: aux_logits = res['aux_logits'] aux_loss = tf.losses.softmax_cross_entropy( logits=aux_logits, onehot_labels=labels, weights=params['aux_head_weight']) loss += aux_loss predictions = tf.argmax(logits, axis=1) labels = tf.argmax(y, axis=1) test_accuracy = tf.reduce_mean(tf.cast(tf.equal(predictions, labels), dtype=tf.float32)) return loss, test_accuracy
Example #6
Source File: plot.py From adversarial-autoencoder with MIT License | 5 votes |
def plot_autoencoder(weightsfile): print('building model') layers = model.build_model() batch_size = 128 print('compiling theano function') encoder_func = theano_funcs.create_encoder_func(layers) print('loading weights from %s' % (weightsfile)) model.load_weights([ layers['l_decoder_out'], layers['l_discriminator_out'], ], weightsfile) print('loading data') X_train, y_train, X_test, y_test = utils.load_mnist() train_datapoints = [] print('transforming training data') for train_idx in get_batch_idx(X_train.shape[0], batch_size): X_train_batch = X_train[train_idx] train_batch_codes = encoder_func(X_train_batch) train_datapoints.append(train_batch_codes) test_datapoints = [] print('transforming test data') for test_idx in get_batch_idx(X_test.shape[0], batch_size): X_test_batch = X_test[test_idx] test_batch_codes = encoder_func(X_test_batch) test_datapoints.append(test_batch_codes) Z_train = np.vstack(train_datapoints) Z_test = np.vstack(test_datapoints) plot(Z_train, y_train, Z_test, y_test, filename='adversarial_train_val.png', title='projected onto latent space of autoencoder')
Example #7
Source File: predict.py From facial-expression-recognition-using-cnn with GNU General Public License v3.0 | 5 votes |
def load_model(): model = None with tf.Graph().as_default(): print( "loading pretrained model...") network = build_model() model = DNN(network) if os.path.isfile(TRAINING.save_model_path): model.load(TRAINING.save_model_path) else: print( "Error: file '{}' not found".format(TRAINING.save_model_path)) return model
Example #8
Source File: train.py From WaveRNN-Pytorch with MIT License | 5 votes |
def test_save_checkpoint(): checkpoint_path = "checkpoints/" device = torch.device("cuda" if use_cuda else "cpu") model = build_model() optimizer = optim.Adam(model.parameters(), lr=1e-4) global global_step, global_epoch, global_test_step save_checkpoint(device, model, optimizer, global_step, checkpoint_path, global_epoch) model = load_checkpoint(checkpoint_path+"checkpoint_step000000000.pth", model, optimizer, False)
Example #9
Source File: tracker.py From MemTrack with MIT License | 5 votes |
def __init__(self, sess, checkpoint_dir=None): self.z_file_init = tf.placeholder(tf.string, [], name='z_filename_init') self.z_roi_init = tf.placeholder(tf.float32, [1, 4], name='z_roi_init') self.z_file = tf.placeholder(tf.string, [], name='z_filename') self.z_roi = tf.placeholder(tf.float32, [1, 4], name='z_roi') self.x_file = tf.placeholder(tf.string, [], name='x_filename') self.x_roi = tf.placeholder(tf.float32, [config.num_scale, 4], name='x_roi') init_z_exemplar,_ = self._read_and_crop_image(self.z_file_init, self.z_roi_init, [config.z_exemplar_size, config.z_exemplar_size]) init_z_exemplar = tf.reshape(init_z_exemplar, [1, 1, config.z_exemplar_size, config.z_exemplar_size, 3]) init_z_exemplar = tf.tile(init_z_exemplar, [config.num_scale, 1, 1, 1, 1]) z_exemplar,_ = self._read_and_crop_image(self.z_file, self.z_roi, [config.z_exemplar_size, config.z_exemplar_size]) z_exemplar = tf.reshape(z_exemplar, [1, 1, config.z_exemplar_size, config.z_exemplar_size, 3]) z_exemplar = tf.tile(z_exemplar, [config.num_scale, 1, 1, 1, 1]) self.x_instances, self.image = self._read_and_crop_image(self.x_file, self.x_roi, [config.x_instance_size, config.x_instance_size]) self.x_instances = tf.reshape(self.x_instances, [config.num_scale, 1, config.x_instance_size, config.x_instance_size, 3]) with tf.variable_scope('mann'): mem_cell = MemNet(config.hidden_size, config.memory_size, config.slot_size, False) self.initial_state = build_initial_state(init_z_exemplar, mem_cell, ModeKeys.PREDICT) self.response, saver, self.final_state = build_model(z_exemplar, self.x_instances, mem_cell, self.initial_state, ModeKeys.PREDICT) self.att_score = mem_cell.att_score up_response_size = config.response_size * config.response_up self.up_response = tf.squeeze(tf.image.resize_images(tf.expand_dims(self.response, -1), [up_response_size, up_response_size], method=tf.image.ResizeMethod.BICUBIC, align_corners=True), -1) if checkpoint_dir is not None: saver.restore(sess, checkpoint_dir) self._sess = sess else: ckpt = tf.train.get_checkpoint_state(config.checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: saver.restore(sess, ckpt.model_checkpoint_path) self._sess = sess
Example #10
Source File: plot.py From adversarial-autoencoder with MIT License | 4 votes |
def plot_latent_space(weightsfile): print('building model') layers = model.build_model() batch_size = 128 decoder_func = theano_funcs.create_decoder_func(layers) print('loading weights from %s' % (weightsfile)) model.load_weights([ layers['l_decoder_out'], layers['l_discriminator_out'], ], weightsfile) # regularly-spaced grid of points sampled from p(z) Z = np.mgrid[2:-2.2:-0.2, -2:2.2:0.2].reshape(2, -1).T[:, ::-1].astype(np.float32) reconstructions = [] print('generating samples') for idx in get_batch_idx(Z.shape[0], batch_size): Z_batch = Z[idx] X_batch = decoder_func(Z_batch) reconstructions.append(X_batch) X = np.vstack(reconstructions) X = X.reshape(X.shape[0], 28, 28) fig = plt.figure(1, (12., 12.)) ax1 = plt.axes(frameon=False) ax1.get_xaxis().set_visible(False) ax1.get_yaxis().set_visible(False) plt.title('samples generated from latent space of autoencoder') grid = ImageGrid( fig, 111, nrows_ncols=(21, 21), share_all=True) print('plotting latent space') for i, x in enumerate(X): img = (x * 255).astype(np.uint8) grid[i].imshow(img, cmap='Greys_r') grid[i].get_xaxis().set_visible(False) grid[i].get_yaxis().set_visible(False) grid[i].set_frame_on(False) plt.savefig('latent_train_val.png', bbox_inches='tight')
Example #11
Source File: inference.py From FaceNet with Apache License 2.0 | 4 votes |
def run(self): # set enviornment os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpuid) print("InferenceWorker init, GPU ID: {}".format(self.gpuid)) from model import build_model # load models model_weights_path = 'models/model.00-0.0296.hdf5' model = build_model() model.load_weights(model_weights_path) while True: try: try: item = self.in_queue.get(block=False) except queue.Empty: continue image_name_0, image_name_1, image_name_2 = item filename = os.path.join(image_folder, image_name_0) image_bgr = cv.imread(filename) image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC) image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB) image_rgb_0 = preprocess_input(image_rgb) filename = os.path.join(image_folder, image_name_1) image_bgr = cv.imread(filename) image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC) image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB) image_rgb_1 = preprocess_input(image_rgb) filename = os.path.join(image_folder, image_name_2) image_bgr = cv.imread(filename) image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC) image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB) image_rgb_2 = preprocess_input(image_rgb) batch_inputs = np.empty((3, 1, img_size, img_size, 3), dtype=np.float32) batch_inputs[0] = image_rgb_0 batch_inputs[1] = image_rgb_1 batch_inputs[2] = image_rgb_2 y_pred = model.predict([batch_inputs[0], batch_inputs[1], batch_inputs[2]]) a = y_pred[0, 0:128] p = y_pred[0, 128:256] n = y_pred[0, 256:384] self.out_queue.put({'image_name': image_name_0, 'embedding': a}) self.out_queue.put({'image_name': image_name_1, 'embedding': p}) self.out_queue.put({'image_name': image_name_2, 'embedding': n}) if self.in_queue.qsize() == 0: break except Exception as e: print(e) import keras.backend as K K.clear_session() print('InferenceWorker done, GPU ID {}'.format(self.gpuid))
Example #12
Source File: train_eval.py From FaceNet with Apache License 2.0 | 4 votes |
def run(self): # set enviornment os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = str(self.gpuid) print("InferenceWorker init, GPU ID: {}".format(self.gpuid)) from model import build_model # load models model = build_model() model.load_weights(get_best_model()) while True: try: sample = {} try: sample['a'] = self.in_queue.get(block=False) sample['p'] = self.in_queue.get(block=False) sample['n'] = self.in_queue.get(block=False) except queue.Empty: break batch_inputs = np.empty((3, 1, img_size, img_size, channel), dtype=np.float32) for j, role in enumerate(['a', 'p', 'n']): image_name = sample[role] filename = os.path.join(image_folder, image_name) image_bgr = cv.imread(filename) image_bgr = cv.resize(image_bgr, (img_size, img_size), cv.INTER_CUBIC) image_rgb = cv.cvtColor(image_bgr, cv.COLOR_BGR2RGB) batch_inputs[j, 0] = preprocess_input(image_rgb) y_pred = model.predict([batch_inputs[0], batch_inputs[1], batch_inputs[2]]) a = y_pred[0, 0:128] p = y_pred[0, 128:256] n = y_pred[0, 256:384] self.out_queue.put({'image_name': sample['a'], 'embedding': a}) self.out_queue.put({'image_name': sample['p'], 'embedding': p}) self.out_queue.put({'image_name': sample['n'], 'embedding': n}) self.signal_queue.put(SENTINEL) if self.in_queue.qsize() == 0: break except Exception as e: print(e) import keras.backend as K K.clear_session() print('InferenceWorker done, GPU ID {}'.format(self.gpuid))