Python keras.applications.inception_v3.preprocess_input() Examples
The following are 30
code examples of keras.applications.inception_v3.preprocess_input().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.applications.inception_v3
, or try the search function
.
Example #1
Source File: predict.py From Transfer-Learning with MIT License | 7 votes |
def predict(model, img, target_size): """Run model prediction on image Args: model: keras model img: PIL format image target_size: (w,h) tuple Returns: list of predicted labels and their probabilities """ if img.size != target_size: img = img.resize(target_size) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) preds = model.predict(x) return preds[0]
Example #2
Source File: test.py From Image-Caption-Generator with MIT License | 6 votes |
def extract_features(filename, model, model_type): if model_type == 'inceptionv3': from keras.applications.inception_v3 import preprocess_input target_size = (299, 299) elif model_type == 'vgg16': from keras.applications.vgg16 import preprocess_input target_size = (224, 224) # Loading and resizing image image = load_img(filename, target_size=target_size) # Convert the image pixels to a numpy array image = img_to_array(image) # Reshape data for the model image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2])) # Prepare the image for the CNN Model model image = preprocess_input(image) # Pass image into model to get encoded features features = model.predict(image, verbose=0) return features # Load the tokenizer
Example #3
Source File: predict.py From Learning-Generative-Adversarial-Networks with MIT License | 6 votes |
def predict(model, img, target_size): """Run model prediction on image Args: model: keras model img: PIL format image target_size: (w,h) tuple Returns: list of predicted labels and their probabilities """ if img.size != target_size: img = img.resize(target_size) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) preds = model.predict(x) return preds[0]
Example #4
Source File: kerasModel.py From Learning-Generative-Adversarial-Networks with MIT License | 6 votes |
def predict(image_file): """ Predict the top 3 categories for the given image file. """ img = image.load_img(image_file, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) results = model.predict(x) top3 = decode_predictions(results, top=3)[0] return [ {'label': label, 'description': description, 'probability': probability * 100.0} for label, description, probability in top3 ]
Example #5
Source File: extractor.py From five-video-classification-methods with MIT License | 6 votes |
def extract(self, image_path): img = image.load_img(image_path, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # Get the prediction. features = self.model.predict(x) if self.weights is None: # For imagenet/default network: features = features[0] else: # For loaded network: features = features[0] return features
Example #6
Source File: run_bottleneck.py From CarND-Transfer-Learning-Lab with MIT License | 6 votes |
def gen(session, data, labels, batch_size): def _f(): start = 0 end = start + batch_size n = data.shape[0] while True: X_batch = session.run(resize_op, {img_placeholder: data[start:end]}) X_batch = preprocess_input(X_batch) y_batch = labels[start:end] start += batch_size end += batch_size if start >= n: start = 0 end = batch_size print(start, end) yield (X_batch, y_batch) return _f
Example #7
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 6 votes |
def extract_Xception(tensor): from keras.applications.xception import Xception, preprocess_input return Xception(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
Example #8
Source File: keras_applications.py From spark-deep-learning with Apache License 2.0 | 6 votes |
def _imagenet_preprocess_input(x, input_shape): """ For ResNet50, VGG models. For InceptionV3 and Xception it's okay to use the keras version (e.g. InceptionV3.preprocess_input) as the code path they hit works okay with tf.Tensor inputs. The following was translated to tf ops from https://github.com/fchollet/keras/blob/fb4a0849cf4dc2965af86510f02ec46abab1a6a4/keras/applications/imagenet_utils.py#L52 It's a possibility to change the implementation in keras to look like the following and modified to work with BGR images (standard in Spark), but not doing it for now. """ # assuming 'BGR' # Zero-center by mean pixel mean = np.ones(input_shape + (3,), dtype=np.float32) mean[..., 0] = 103.939 mean[..., 1] = 116.779 mean[..., 2] = 123.68 return x - mean
Example #9
Source File: preprocessing.py From Image-Caption-Generator with MIT License | 6 votes |
def extract_features(path, model_type): if model_type == 'inceptionv3': from keras.applications.inception_v3 import preprocess_input target_size = (299, 299) elif model_type == 'vgg16': from keras.applications.vgg16 import preprocess_input target_size = (224, 224) # Get CNN Model from model.py model = CNNModel(model_type) features = dict() # Extract features from each photo for name in tqdm(os.listdir(path)): # Loading and resizing image filename = path + name image = load_img(filename, target_size=target_size) # Convert the image pixels to a numpy array image = img_to_array(image) # Reshape data for the model image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2])) # Prepare the image for the CNN Model model image = preprocess_input(image) # Pass image into model to get encoded features feature = model.predict(image, verbose=0) # Store encoded features for the image image_id = name.split('.')[0] features[image_id] = feature return features
Example #10
Source File: tf_image_test.py From spark-deep-learning with Apache License 2.0 | 6 votes |
def test_load_image_vs_keras_RGB(self): g = tf.Graph() with g.as_default(): image_arr = utils.imageInputPlaceholder() # keras expects array in RGB order, we get it from image schema in BGR => need to flip preprocessed = preprocess_input(image_arr) output_col = "transformed_image" transformer = TFImageTransformer(channelOrder='RGB', inputCol="image", outputCol=output_col, graph=g, inputTensor=image_arr, outputTensor=preprocessed.name, outputMode="vector") image_df = image_utils.getSampleImageDF() df = transformer.transform(image_df.limit(5)) for row in df.collect(): processed = np.array(row[output_col], dtype = np.float32) # compare to keras loading images = self._loadImageViaKeras(row["image"]['origin']) image = images[0] image.shape = (1, image.shape[0] * image.shape[1] * image.shape[2]) keras_processed = image[0] np.testing.assert_array_almost_equal(keras_processed, processed, decimal = 6) # Test full pre-processing for InceptionV3 as an example of a simple computation graph
Example #11
Source File: tf_image_test.py From spark-deep-learning with Apache License 2.0 | 6 votes |
def test_load_image_vs_keras(self): g = tf.Graph() with g.as_default(): image_arr = utils.imageInputPlaceholder() # keras expects array in RGB order, we get it from image schema in BGR => need to flip preprocessed = preprocess_input(imageIO._reverseChannels(image_arr)) output_col = "transformed_image" transformer = TFImageTransformer(channelOrder='BGR', inputCol="image", outputCol=output_col, graph=g, inputTensor=image_arr, outputTensor=preprocessed.name, outputMode="vector") image_df = image_utils.getSampleImageDF() df = transformer.transform(image_df.limit(5)) for row in df.collect(): processed = np.array(row[output_col]).astype(np.float32) # compare to keras loading images = self._loadImageViaKeras(row["image"]['origin']) image = images[0] image.shape = (1, image.shape[0] * image.shape[1] * image.shape[2]) keras_processed = image[0] np.testing.assert_array_almost_equal(keras_processed, processed, decimal=6)
Example #12
Source File: deep_dream.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate tensors. img = load_img(image_path) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #13
Source File: model.py From transfer with MIT License | 5 votes |
def gen_minibatches(array_dir, array_names, batch_size, architecture, final = False): array_names = list(array_names) while True: # in place shuffle np.random.shuffle(array_names) array_names_mb = array_names[:batch_size] arrays = [] labels = [] for array_name in array_names_mb: img_path = os.path.join(array_dir, array_name) array = np.load(img_path) if final: if architecture == 'resnet50': array = np.squeeze(resnet_preprocess_input(array[np.newaxis].astype(np.float32))) elif architecture == 'xception': array = np.squeeze(xception_preprocess_input(array[np.newaxis].astype(np.float32))) else: array = np.squeeze(inception_v3_preprocess_input(array[np.newaxis].astype(np.float32))) arrays.append(array) labels.append(np.load(img_path.replace('-img-','-label-'))) yield np.array(arrays), np.array(labels)
Example #14
Source File: deep_dream.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate tensors. img = load_img(image_path) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #15
Source File: deep_dream.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate tensors. img = load_img(image_path) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #16
Source File: deep_dream.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate tensors. img = load_img(image_path) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #17
Source File: deep_dream.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate tensors. img = load_img(image_path) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #18
Source File: deep_dream.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate tensors. img = load_img(image_path) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #19
Source File: deep_dream.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate tensors. img = load_img(image_path) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #20
Source File: predict_model.py From transfer with MIT License | 5 votes |
def multi_predict(aug_gen, models, architecture): predicted = [] for img, _ in aug_gen: if architecture == 'resnet50': img = resnet_preprocess_input(img[np.newaxis].astype(np.float32)) elif architecture == 'xception': img = xception_preprocess_input(img[np.newaxis].astype(np.float32)) else: img = inception_v3_preprocess_input(img[np.newaxis].astype(np.float32)) for model in models: predicted.append(model.predict(img)) predicted = np.array(predicted).sum(axis=0) pred_list = list(predicted[0]) return predicted, pred_list
Example #21
Source File: deep_dream.py From pCVR with Apache License 2.0 | 5 votes |
def preprocess_image(image_path): # Util function to open, resize and format pictures # into appropriate tensors. img = load_img(image_path) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #22
Source File: image_utils.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def loadAndPreprocessKerasInceptionV3(raw_uri): # this is the canonical way to load and prep images in keras uri = raw_uri[5:] if raw_uri.startswith("file:/") else raw_uri image = img_to_array(load_img(uri, target_size=InceptionV3Constants.INPUT_SHAPE)) image = np.expand_dims(image, axis=0) return preprocess_input(image)
Example #23
Source File: models.py From ICIAR2018 with MIT License | 5 votes |
def predict(self, x): if self.data_format == "channels_first": x = x.transpose(0, 3, 1, 2) x = preprocess_inception(x.astype(K.floatx())) return self.model.predict(x, batch_size=self.batch_size)
Example #24
Source File: utils.py From deep-learning-note with MIT License | 5 votes |
def preprocess_image(image_path): img = image.load_img(image_path) img = image.img_to_array(img) img = np.expand_dims(img, axis=0) img = inception_v3.preprocess_input(img) return img
Example #25
Source File: imageLoader.py From glyphreader with MIT License | 5 votes |
def loadImage(path): img = image.load_img(path, target_size=(299, 299)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) return x
Example #26
Source File: test_builder.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def test_keras_consistency(self): """ Exported model in Keras should get same result as original """ img_fpaths = glob(os.path.join(_getSampleJPEGDir(), '*.jpg')) def keras_load_and_preproc(fpath): img = load_img(fpath, target_size=(299, 299)) img_arr = img_to_array(img) img_iv3_input = iv3.preprocess_input(img_arr) return np.expand_dims(img_iv3_input, axis=0) imgs_iv3_input = np.vstack([keras_load_and_preproc(fp) for fp in img_fpaths]) model_ref = InceptionV3(weights="imagenet") preds_ref = model_ref.predict(imgs_iv3_input) with IsolatedSession(using_keras=True) as issn: K.set_learning_phase(0) model = InceptionV3(weights="imagenet") gfn = issn.asGraphFunction(model.inputs, model.outputs) with IsolatedSession(using_keras=True) as issn: K.set_learning_phase(0) feeds, fetches = issn.importGraphFunction(gfn, prefix="InceptionV3") preds_tgt = issn.run(fetches[0], {feeds[0]: imgs_iv3_input}) np.testing.assert_array_almost_equal(preds_tgt, preds_ref, decimal=5)
Example #27
Source File: pre_model.py From transfer with MIT License | 5 votes |
def val_pre_model(source_path, folder, img_dim, architechture): array_path = os.path.join(source_path, folder) pre_model_path = os.path.join(source_path, 'pre_model') shutil.rmtree(pre_model_path,ignore_errors=True) os.makedirs(pre_model_path) if architechture == 'resnet50': popped, pre_model = get_resnet_pre_model(img_dim) elif architechture == 'xception': popped, pre_model = get_xception_pre_model(img_dim) else: popped, pre_model = get_inception_v3_pre_model(img_dim) for (array, label, array_name, label_name) in tqdm(gen_array_from_dir(array_path)): if architechture == 'resnet50': array = resnet_preprocess_input(array[np.newaxis].astype(np.float32)) elif architechture == 'xception': array = xception_preprocess_input(array[np.newaxis].astype(np.float32)) else: array = inception_v3_preprocess_input(array[np.newaxis].astype(np.float32)) array_pre_model = np.squeeze(pre_model.predict(array, batch_size=1)) array_name = array_name.split('.')[0] label_name = label_name.split('.')[0] img_pre_model_path = os.path.join(pre_model_path, array_name) label_pre_model_path = os.path.join(pre_model_path, label_name) np.save(img_pre_model_path, array_pre_model) np.save(label_pre_model_path, label)
Example #28
Source File: tf_image_test.py From spark-deep-learning with Apache License 2.0 | 5 votes |
def _loadImageViaKeras(self, raw_uri): uri = raw_uri[5:] if raw_uri.startswith("file:/") else raw_uri image = img_to_array(load_img(uri)) image = np.expand_dims(image, axis=0) return preprocess_input(image)
Example #29
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 5 votes |
def extract_InceptionV3(tensor): from keras.applications.inception_v3 import InceptionV3, preprocess_input return InceptionV3(weights='imagenet', include_top=False).predict(preprocess_input(tensor))
Example #30
Source File: extract_bottleneck_features.py From kale with Apache License 2.0 | 5 votes |
def extract_Resnet50(tensor): from keras.applications.resnet50 import ResNet50, preprocess_input return ResNet50(weights='imagenet', include_top=False).predict(preprocess_input(tensor))