Python params.batch_size() Examples
The following are 11
code examples of params.batch_size().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
params
, or try the search function
.
Example #1
Source File: usps.py From pytorch-adda with MIT License | 6 votes |
def get_usps(train): """Get USPS dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=params.dataset_mean, std=params.dataset_std)]) # dataset and data loader usps_dataset = USPS(root=params.data_root, train=train, transform=pre_process, download=True) usps_data_loader = torch.utils.data.DataLoader( dataset=usps_dataset, batch_size=params.batch_size, shuffle=True) return usps_data_loader
Example #2
Source File: mnist.py From pytorch-adda with MIT License | 6 votes |
def get_mnist(train): """Get MNIST dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=params.dataset_mean, std=params.dataset_std)]) # dataset and data loader mnist_dataset = datasets.MNIST(root=params.data_root, train=train, transform=pre_process, download=True) mnist_data_loader = torch.utils.data.DataLoader( dataset=mnist_dataset, batch_size=params.batch_size, shuffle=True) return mnist_data_loader
Example #3
Source File: train.py From Kaggle-Carvana-Image-Masking-Challenge with MIT License | 6 votes |
def valid_generator(): while True: for start in range(0, len(ids_valid_split), batch_size): x_batch = [] y_batch = [] end = min(start + batch_size, len(ids_valid_split)) ids_valid_batch = ids_valid_split[start:end] for id in ids_valid_batch.values: img = cv2.imread('input/train/{}.jpg'.format(id)) img = cv2.resize(img, (input_size, input_size)) mask = cv2.imread('input/train_masks/{}_mask.png'.format(id), cv2.IMREAD_GRAYSCALE) mask = cv2.resize(mask, (input_size, input_size)) mask = np.expand_dims(mask, axis=2) x_batch.append(img) y_batch.append(mask) x_batch = np.array(x_batch, np.float32) / 255 y_batch = np.array(y_batch, np.float32) / 255 yield x_batch, y_batch
Example #4
Source File: test_submit_multi_gpu.py From Kaggle-Carvana-Image-Masking-Challenge with MIT License | 5 votes |
def data_loader(q, ): for start in tqdm(range(0, len(ids_test), batch_size)): x_batch = [] end = min(start + batch_size, len(ids_test)) ids_test_batch = ids_test[start:end] for id in ids_test_batch.values: img = cv2.imread('input/test/{}.jpg'.format(id)) if input_size is not None: img = cv2.resize(img, (input_size, input_size)) x_batch.append(img) x_batch = np.array(x_batch, np.float32) / 255 q.put((ids_test_batch, x_batch)) for g in gpus: q.put((None, None))
Example #5
Source File: test_submit_multithreaded.py From Kaggle-Carvana-Image-Masking-Challenge with MIT License | 5 votes |
def data_loader(q, ): for start in range(0, len(ids_test), batch_size): x_batch = [] end = min(start + batch_size, len(ids_test)) ids_test_batch = ids_test[start:end] for id in ids_test_batch.values: img = cv2.imread('input/test/{}.jpg'.format(id)) img = cv2.resize(img, (input_size, input_size)) x_batch.append(img) x_batch = np.array(x_batch, np.float32) / 255 q.put(x_batch)
Example #6
Source File: test_submit_multithreaded.py From Kaggle-Carvana-Image-Masking-Challenge with MIT License | 5 votes |
def predictor(q, ): for i in tqdm(range(0, len(ids_test), batch_size)): x_batch = q.get() with graph.as_default(): preds = model.predict_on_batch(x_batch) preds = np.squeeze(preds, axis=3) for pred in preds: prob = cv2.resize(pred, (orig_width, orig_height)) mask = prob > threshold rle = run_length_encode(mask) rles.append(rle)
Example #7
Source File: train.py From Kaggle-Carvana-Image-Masking-Challenge with MIT License | 5 votes |
def train_generator(): while True: for start in range(0, len(ids_train_split), batch_size): x_batch = [] y_batch = [] end = min(start + batch_size, len(ids_train_split)) ids_train_batch = ids_train_split[start:end] for id in ids_train_batch.values: img = cv2.imread('input/train/{}.jpg'.format(id)) img = cv2.resize(img, (input_size, input_size)) mask = cv2.imread('input/train_masks/{}_mask.png'.format(id), cv2.IMREAD_GRAYSCALE) mask = cv2.resize(mask, (input_size, input_size)) img = randomHueSaturationValue(img, hue_shift_limit=(-50, 50), sat_shift_limit=(-5, 5), val_shift_limit=(-15, 15)) img, mask = randomShiftScaleRotate(img, mask, shift_limit=(-0.0625, 0.0625), scale_limit=(-0.1, 0.1), rotate_limit=(-0, 0)) img, mask = randomHorizontalFlip(img, mask) mask = np.expand_dims(mask, axis=2) x_batch.append(img) y_batch.append(mask) x_batch = np.array(x_batch, np.float32) / 255 y_batch = np.array(y_batch, np.float32) / 255 yield x_batch, y_batch
Example #8
Source File: data_shuffled.py From DeepPicar-v2 with GNU General Public License v2.0 | 5 votes |
def load_batch(purpose): p = purpose assert len(imgs[p]) == len(wheels[p]) n = len(imgs[p]) assert n > 0 ii = random.sample(xrange(0, n), params.batch_size) assert len(ii) == params.batch_size xx, yy = [], [] for i in ii: xx.append(imgs[p][i]) yy.append(wheels[p][i]) return xx, yy
Example #9
Source File: data_shuffled.py From DeepPicar-v2 with GNU General Public License v2.0 | 5 votes |
def load_batch_category_normal(purpose): p = purpose xx, yy = [], [] nc = len(categories) for c in categories: n = len(imgs_cat[p][c]) assert n > 0 ii = random.sample(xrange(0, n), int(params.batch_size/nc)) assert len(ii) == int(params.batch_size/nc) for i in ii: xx.append(imgs_cat[p][c][i]) yy.append(wheels_cat[p][c][i]) return xx, yy
Example #10
Source File: convert_onnx.py From inference with Apache License 2.0 | 4 votes |
def convert(args): make_folder(args.save_folder) labels = get_labels(params) audio_conf = get_audio_conf(params) val_batch_size = min(8, params.batch_size_val) print("Using bs={} for validation. Parameter found was {}".format(val_batch_size, params.batch_size_val)) train_dataset = SpectrogramDataset(audio_conf=audio_conf, manifest_filepath=params.train_manifest, labels=labels, normalize=True, augment=params.augment) train_loader = AudioDataLoader(train_dataset, batch_size=params.batch_size, num_workers=(1 if params.cuda else 1)) model = get_model(params) if args.continue_from: print("Loading checkpoint model %s" % args.continue_from) package = torch.load(args.continue_from) model.load_state_dict(package['state_dict']) if params.cuda: model = model.cuda() if params.cuda: model = torch.nn.DataParallel(model).cuda() print(model) print("Number of parameters: %d" % DeepSpeech.get_param_size(model)) # Begin ONNX conversion model.train(False) # Input to the model data = next(iter(train_loader)) inputs, targets, input_percentages, target_sizes = data inputs = torch.Tensor(inputs, requires_grad=False) if params.cuda: inputs = inputs.cuda() x = inputs print("input has size:{}".format(x.size())) # Export the model onnx_file_path = osp.join(osp.dirname(args.continue_from), osp.basename(args.continue_from).split('.')[0] + ".onnx") print("Saving new ONNX model to: {}".format(onnx_file_path)) torch.onnx.export(model, # model being run inputs, # model input (or a tuple for multiple inputs) onnx_file_path, # where to save the model (can be a file or file-like object) export_params=True, # store the trained parameter weights inside the model file verbose=False)
Example #11
Source File: cnn_train.py From Kaggle-Statoil-Iceberg-Classifier-ConvNets with MIT License | 4 votes |
def data_generator(data=None, meta_data=None, labels=None, batch_size=16, augment={}, opt_shuffle=True): indices = [i for i in range(len(labels))] while True: if opt_shuffle: shuffle(indices) x_data = np.copy(data) x_meta_data = np.copy(meta_data) x_labels = np.copy(labels) for start in range(0, len(labels), batch_size): end = min(start + batch_size, len(labels)) sel_indices = indices[start:end] #select data data_batch = x_data[sel_indices] xm_batch = x_meta_data[sel_indices] y_batch = x_labels[sel_indices] x_batch = [] for x in data_batch: #augment if augment.get('Rotate', False): x = aug.Rotate(x, u=0.1, v=np.random.random()) x = aug.Rotate90(x, u=0.1, v=np.random.random()) if augment.get('Shift', False): x = aug.Shift(x, u=0.05, v=np.random.random()) if augment.get('Zoom', False): x = aug.Zoom(x, u=0.05, v=np.random.random()) if augment.get('Flip', False): x = aug.HorizontalFlip(x, u=0.5, v=np.random.random()) x = aug.VerticalFlip(x, u=0.5, v=np.random.random()) x_batch.append(x) x_batch = np.array(x_batch, np.float32) yield [x_batch, xm_batch], y_batch ###############################################################################