Python nets.vgg.vgg_a() Examples
The following are 30
code examples of nets.vgg.vgg_a().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.vgg
, or try the search function
.
Example #1
Source File: vgg_test.py From tf-pose with Apache License 2.0 | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #2
Source File: vgg_test.py From R3Det_Tensorflow with MIT License | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #3
Source File: vgg_test.py From CVTron with Apache License 2.0 | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #4
Source File: vgg_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #5
Source File: vgg_test.py From DeepLab_v3 with MIT License | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #6
Source File: vgg_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def testNoClasses(self): batch_size = 5 height, width = 224, 224 num_classes = None with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) self.assertTrue(net.op.name.startswith('vgg_a/fc7'))
Example #7
Source File: vgg_test.py From DeepLab_v3 with MIT License | 6 votes |
def testNoClasses(self): batch_size = 5 height, width = 224, 224 num_classes = None with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) self.assertTrue(net.op.name.startswith('vgg_a/fc7'))
Example #8
Source File: vgg_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #9
Source File: vgg_test.py From CVTron with Apache License 2.0 | 6 votes |
def testNoClasses(self): batch_size = 5 height, width = 224, 224 num_classes = None with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) self.assertTrue(net.op.name.startswith('vgg_a/fc7'))
Example #10
Source File: vgg_test.py From DeepLab_v3 with MIT License | 6 votes |
def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.test_session(): train_inputs = tf.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_a(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) tf.get_variable_scope().reuse_variables() eval_inputs = tf.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_a(eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = tf.reduce_mean(logits, [1, 2]) predictions = tf.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
Example #11
Source File: vgg_test.py From tensorflow-litterbox with Apache License 2.0 | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #12
Source File: vgg_test.py From R2CNN-Plus-Plus_Tensorflow with MIT License | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #13
Source File: vgg_test.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #14
Source File: vgg_test.py From R2CNN_Faster-RCNN_Tensorflow with MIT License | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #15
Source File: vgg_test.py From tf-pose with Apache License 2.0 | 6 votes |
def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.test_session(): train_inputs = tf.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_a(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) tf.get_variable_scope().reuse_variables() eval_inputs = tf.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_a(eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = tf.reduce_mean(logits, [1, 2]) predictions = tf.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
Example #16
Source File: vgg_test.py From edafa with MIT License | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #17
Source File: vgg_test.py From edafa with MIT License | 6 votes |
def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.test_session(): train_inputs = tf.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_a(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) tf.get_variable_scope().reuse_variables() eval_inputs = tf.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_a(eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = tf.reduce_mean(logits, [1, 2]) predictions = tf.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
Example #18
Source File: vgg_test.py From tf-pose with Apache License 2.0 | 6 votes |
def testNoClasses(self): batch_size = 5 height, width = 224, 224 num_classes = None with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) self.assertTrue(net.op.name.startswith('vgg_a/fc7'))
Example #19
Source File: vgg_test.py From ctw-baseline with MIT License | 6 votes |
def testEndPoints(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) _, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', 'vgg_a/fc8' ] self.assertSetEqual(set(end_points.keys()), set(expected_names))
Example #20
Source File: vgg_test.py From edafa with MIT License | 6 votes |
def testNoClasses(self): batch_size = 5 height, width = 224, 224 num_classes = None with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) net, end_points = vgg.vgg_a(inputs, num_classes) expected_names = ['vgg_a/conv1/conv1_1', 'vgg_a/pool1', 'vgg_a/conv2/conv2_1', 'vgg_a/pool2', 'vgg_a/conv3/conv3_1', 'vgg_a/conv3/conv3_2', 'vgg_a/pool3', 'vgg_a/conv4/conv4_1', 'vgg_a/conv4/conv4_2', 'vgg_a/pool4', 'vgg_a/conv5/conv5_1', 'vgg_a/conv5/conv5_2', 'vgg_a/pool5', 'vgg_a/fc6', 'vgg_a/fc7', ] self.assertSetEqual(set(end_points.keys()), set(expected_names)) self.assertTrue(net.op.name.startswith('vgg_a/fc7'))
Example #21
Source File: vgg_test.py From CVTron with Apache License 2.0 | 6 votes |
def testTrainEvalWithReuse(self): train_batch_size = 2 eval_batch_size = 1 train_height, train_width = 224, 224 eval_height, eval_width = 256, 256 num_classes = 1000 with self.test_session(): train_inputs = tf.random_uniform( (train_batch_size, train_height, train_width, 3)) logits, _ = vgg.vgg_a(train_inputs) self.assertListEqual(logits.get_shape().as_list(), [train_batch_size, num_classes]) tf.get_variable_scope().reuse_variables() eval_inputs = tf.random_uniform( (eval_batch_size, eval_height, eval_width, 3)) logits, _ = vgg.vgg_a(eval_inputs, is_training=False, spatial_squeeze=False) self.assertListEqual(logits.get_shape().as_list(), [eval_batch_size, 2, 2, num_classes]) logits = tf.reduce_mean(logits, [1, 2]) predictions = tf.argmax(logits, 1) self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
Example #22
Source File: vgg_test.py From CVTron with Apache License 2.0 | 5 votes |
def testFullyConvolutional(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'vgg_a/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes])
Example #23
Source File: vgg_test.py From edafa with MIT License | 5 votes |
def testFullyConvolutional(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'vgg_a/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes])
Example #24
Source File: vgg_test.py From edafa with MIT License | 5 votes |
def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes) self.assertEquals(logits.op.name, 'vgg_a/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes])
Example #25
Source File: vgg_test.py From edafa with MIT License | 5 votes |
def testGlobalPool(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes, spatial_squeeze=False, global_pool=True) self.assertEquals(logits.op.name, 'vgg_a/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 1, 1, num_classes])
Example #26
Source File: vgg_test.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def testFullyConvolutional(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes, spatial_squeeze=False) self.assertEquals(logits.op.name, 'vgg_a/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 2, 2, num_classes])
Example #27
Source File: vgg_test.py From CVTron with Apache License 2.0 | 5 votes |
def testEvaluation(self): batch_size = 2 height, width = 224, 224 num_classes = 1000 with self.test_session(): eval_inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(eval_inputs, is_training=False) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) predictions = tf.argmax(logits, 1) self.assertListEqual(predictions.get_shape().as_list(), [batch_size])
Example #28
Source File: vgg_test.py From CVTron with Apache License 2.0 | 5 votes |
def testForward(self): batch_size = 1 height, width = 224, 224 with self.test_session() as sess: inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs) sess.run(tf.global_variables_initializer()) output = sess.run(logits) self.assertTrue(output.any())
Example #29
Source File: vgg_test.py From CVTron with Apache License 2.0 | 5 votes |
def testGlobalPool(self): batch_size = 1 height, width = 256, 256 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes, spatial_squeeze=False, global_pool=True) self.assertEquals(logits.op.name, 'vgg_a/fc8/BiasAdd') self.assertListEqual(logits.get_shape().as_list(), [batch_size, 1, 1, num_classes])
Example #30
Source File: vgg_test.py From CVTron with Apache License 2.0 | 5 votes |
def testBuild(self): batch_size = 5 height, width = 224, 224 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) logits, _ = vgg.vgg_a(inputs, num_classes) self.assertEquals(logits.op.name, 'vgg_a/fc8/squeezed') self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes])