Python nets.vgg.vgg_arg_scope() Examples

The following are 6 code examples of nets.vgg.vgg_arg_scope(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module nets.vgg , or try the search function .
Example #1
Source File: model_train.py    From ICDAR-2019-SROIE with MIT License 6 votes vote down vote up
def model(image):
    image = mean_image_subtraction(image)
    with slim.arg_scope(vgg.vgg_arg_scope()):
        conv5_3 = vgg.vgg_16(image)

    rpn_conv = slim.conv2d(conv5_3, 512, 3)

    lstm_output = Bilstm(rpn_conv, 512, 128, 512, scope_name='BiLSTM')

    bbox_pred = lstm_fc(lstm_output, 512, 10 * 4, scope_name="bbox_pred")
    cls_pred = lstm_fc(lstm_output, 512, 10 * 2, scope_name="cls_pred")

    # transpose: (1, H, W, A x d) -> (1, H, WxA, d)
    cls_pred_shape = tf.shape(cls_pred)
    cls_pred_reshape = tf.reshape(cls_pred, [cls_pred_shape[0], cls_pred_shape[1], -1, 2])

    cls_pred_reshape_shape = tf.shape(cls_pred_reshape)
    cls_prob = tf.reshape(tf.nn.softmax(tf.reshape(cls_pred_reshape, [-1, cls_pred_reshape_shape[3]])),
                          [-1, cls_pred_reshape_shape[1], cls_pred_reshape_shape[2], cls_pred_reshape_shape[3]],
                          name="cls_prob")

    return bbox_pred, cls_pred, cls_prob 
Example #2
Source File: model_train.py    From ctpn-crnn with MIT License 6 votes vote down vote up
def model(image):
    image = mean_image_subtraction(image)
    with slim.arg_scope(vgg.vgg_arg_scope()):
        conv5_3 = vgg.vgg_16(image)

    rpn_conv = slim.conv2d(conv5_3, 512, 3)

    lstm_output = Bilstm(rpn_conv, 512, 128, 512, scope_name='BiLSTM')

    bbox_pred = lstm_fc(lstm_output, 512, 10 * 4, scope_name="bbox_pred")
    cls_pred = lstm_fc(lstm_output, 512, 10 * 2, scope_name="cls_pred")

    # transpose: (1, H, W, A x d) -> (1, H, WxA, d)
    cls_pred_shape = tf.shape(cls_pred)
    cls_pred_reshape = tf.reshape(cls_pred, [cls_pred_shape[0], cls_pred_shape[1], -1, 2])

    cls_pred_reshape_shape = tf.shape(cls_pred_reshape)
    cls_prob = tf.reshape(tf.nn.softmax(tf.reshape(cls_pred_reshape, [-1, cls_pred_reshape_shape[3]])),
                          [-1, cls_pred_reshape_shape[1], cls_pred_reshape_shape[2], cls_pred_reshape_shape[3]],
                          name="cls_prob")

    return bbox_pred, cls_pred, cls_prob 
Example #3
Source File: faster_rcnn_vgg_16_feature_extractor.py    From mtl-ssl with Apache License 2.0 6 votes vote down vote up
def _extract_proposal_features(self, preprocessed_inputs, scope):
    if len(preprocessed_inputs.get_shape().as_list()) != 4:
      raise ValueError('`preprocessed_inputs` must be 4 dimensional, got a '
                       'tensor of shape %s' % preprocessed_inputs.get_shape())
    shape_assert = tf.Assert(
        tf.logical_and(
            tf.greater_equal(tf.shape(preprocessed_inputs)[1], 33),
            tf.greater_equal(tf.shape(preprocessed_inputs)[2], 33)),
        ['image size must at least be 33 in both height and width.'])

    with tf.control_dependencies([shape_assert]):
      with slim.arg_scope(
          vgg.vgg_arg_scope(weight_decay=self._weight_decay)):
        with tf.variable_scope(
            self._architecture, reuse=self._reuse_weights) as var_scope:
          _, endpoints = self._vgg_model(
              preprocessed_inputs,
              final_endpoint='conv5',
              trainable=self._is_training,
              freeze_layer=self._freeze_layer,
              scope=var_scope)

    handle = self._base_features
    return endpoints[handle] 
Example #4
Source File: attack_vgg16_mim.py    From Translation-Invariant-Attacks with Apache License 2.0 5 votes vote down vote up
def graph(x, y, i, x_max, x_min, grad):
  eps = FLAGS.max_epsilon
  num_iter = FLAGS.num_iter
  alpha = eps / num_iter
  momentum = FLAGS.momentum
  num_classes = 1000

  with slim.arg_scope(vgg.vgg_arg_scope()):
      logits, end_points = vgg.vgg_16(
          x, num_classes=num_classes, is_training=False)
            
  pred = tf.argmax(logits, 1)

  first_round = tf.cast(tf.equal(i, 0), tf.int64)
  y = first_round * pred + (1 - first_round) * y
  one_hot = tf.one_hot(y, num_classes)

  cross_entropy = tf.losses.softmax_cross_entropy(one_hot,
                                                  logits,
                                                  label_smoothing=0.0,
                                                  weights=1.0)
  noise = tf.gradients(cross_entropy, x)[0]
  noise = tf.nn.depthwise_conv2d(noise, stack_kernel, strides=[1, 1, 1, 1], padding='SAME')
  noise = noise / tf.reduce_mean(tf.abs(noise), [1,2,3], keep_dims=True)
  noise = momentum * grad + noise
  x = x + alpha * tf.sign(noise)
  x = tf.clip_by_value(x, x_min, x_max)
  i = tf.add(i, 1)
  return x, y, i, x_max, x_min, noise 
Example #5
Source File: pretrained.py    From SSD_tensorflow_VOC with Apache License 2.0 5 votes vote down vote up
def use_vgg16(self):
        
        with tf.Graph().as_default():
            image_size = vgg.vgg_16.default_image_size
            img_path = "../../data/misec_images/First_Student_IC_school_bus_202076.jpg"
            checkpoint_path = "../../data/trained_models/vgg16/vgg_16.ckpt"
            
            image_string = tf.read_file(img_path)
            image = tf.image.decode_jpeg(image_string, channels=3)
            processed_image = vgg_preprocessing.preprocess_image(image, image_size, image_size, is_training=False)
            processed_images  = tf.expand_dims(processed_image, 0)
            
            # Create the model, use the default arg scope to configure the batch norm parameters.
            with slim.arg_scope(vgg.vgg_arg_scope()):
                # 1000 classes instead of 1001.
                logits, _ = vgg.vgg_16(processed_images, num_classes=1000, is_training=False)
                probabilities = tf.nn.softmax(logits)
                
                init_fn = slim.assign_from_checkpoint_fn(
                    checkpoint_path,
                    slim.get_model_variables('vgg_16'))
                
                with tf.Session() as sess:
                    init_fn(sess)
                    np_image, probabilities = sess.run([image, probabilities])
                    probabilities = probabilities[0, 0:]
                    sorted_inds = [i[0] for i in sorted(enumerate(-probabilities), key=lambda x:x[1])]
                    self.disp_names(sorted_inds,probabilities,include_background=False)
                    
                plt.figure()
                plt.imshow(np_image.astype(np.uint8))
                plt.axis('off')
                plt.title(img_path)
                plt.show()
        return 
Example #6
Source File: faster_rcnn_vgg_16_feature_extractor.py    From mtl-ssl with Apache License 2.0 5 votes vote down vote up
def _extract_box_classifier_features(self, proposal_feature_maps, scope):
    with tf.variable_scope(self._architecture, reuse=self._reuse_weights):
      with slim.arg_scope(
          vgg.vgg_arg_scope(weight_decay=self._weight_decay)):
          proposal_classifier_features = tf.identity(proposal_feature_maps)
    return proposal_classifier_features