Python cloudpickle.loads() Examples
The following are 30
code examples of cloudpickle.loads().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cloudpickle
, or try the search function
.
Example #1
Source File: MeshVTK.py From pyleecan with Apache License 2.0 | 7 votes |
def _set_mesh(self, value): """setter of mesh""" try: # Check the type check_var("mesh", value, "dict") except CheckTypeError: check_var("mesh", value, "pyvista.core.pointset.UnstructuredGrid") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._mesh = loads(value["serialized"].encode("ISO-8859-2")) else: self._mesh = value # Pyvista object of the mesh (optional) # Type : pyvista.core.pointset.UnstructuredGrid
Example #2
Source File: custom_package_deployer.py From Hunch with Apache License 2.0 | 6 votes |
def install_custom_package(self, model_blob, model_id, model_version, delete_previous): """ Args: model_blob: model_id: model_version: delete_previous: Returns: """ model_obj = cloudpickle.loads(model_blob) if isinstance(model_obj, dict) and 'custom_package_blob' in model_obj.keys(): (custom_package_name, custom_package_version, tar_file_content) = self.unpack_pkg(model_obj) self.check_package_version(custom_package_version, model_id, model_version) self.install_custom_module(custom_package_name, custom_package_version, model_id, model_version, tar_file_content, delete_previous=delete_previous)
Example #3
Source File: OutMag.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_Br(self, value): """setter of Br""" try: # Check the type check_var("Br", value, "dict") except CheckTypeError: check_var("Br", value, "SciDataTool.Classes.DataND.DataND") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._Br = loads(value["serialized"].encode("ISO-8859-2")) else: self._Br = value # Radial airgap flux density # Type : SciDataTool.Classes.DataND.DataND
Example #4
Source File: OptiGenAlg.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_selector(self, value): """setter of selector""" try: check_var("selector", value, "list") except CheckTypeError: check_var("selector", value, "function") if isinstance(value, list): # Load function from saved dict self._selector = [loads(value[0].encode("ISO-8859-2")), value[1]] elif value is None: self._selector = [None, None] elif callable(value): self._selector = [value, getsource(value)] else: raise TypeError( "Expected function or list from a saved file, got: " + str(type(value)) ) # Selector of the genetic algorithm # Type : function
Example #5
Source File: OptiGenAlg.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_crossover(self, value): """setter of crossover""" try: check_var("crossover", value, "list") except CheckTypeError: check_var("crossover", value, "function") if isinstance(value, list): # Load function from saved dict self._crossover = [loads(value[0].encode("ISO-8859-2")), value[1]] elif value is None: self._crossover = [None, None] elif callable(value): self._crossover = [value, getsource(value)] else: raise TypeError( "Expected function or list from a saved file, got: " + str(type(value)) ) # Crossover of the genetic algorithm # Type : function
Example #6
Source File: OptiGenAlg.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_mutator(self, value): """setter of mutator""" try: check_var("mutator", value, "list") except CheckTypeError: check_var("mutator", value, "function") if isinstance(value, list): # Load function from saved dict self._mutator = [loads(value[0].encode("ISO-8859-2")), value[1]] elif value is None: self._mutator = [None, None] elif callable(value): self._mutator = [value, getsource(value)] else: raise TypeError( "Expected function or list from a saved file, got: " + str(type(value)) ) # Mutator of the genetic algorithm # Type : function
Example #7
Source File: OutMag.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_Bt(self, value): """setter of Bt""" try: # Check the type check_var("Bt", value, "dict") except CheckTypeError: check_var("Bt", value, "SciDataTool.Classes.DataND.DataND") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._Bt = loads(value["serialized"].encode("ISO-8859-2")) else: self._Bt = value # Tangential airgap flux density # Type : SciDataTool.Classes.DataND.DataND
Example #8
Source File: OptiDesignVar.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_function(self, value): """setter of function""" try: check_var("function", value, "list") except CheckTypeError: check_var("function", value, "function") if isinstance(value, list): # Load function from saved dict self._function = [loads(value[0].encode("ISO-8859-2")), value[1]] elif value is None: self._function = [None, None] elif callable(value): self._function = [value, getsource(value)] else: raise TypeError( "Expected function or list from a saved file, got: " + str(type(value)) ) # Function of the space to initiate the variable # Type : function
Example #9
Source File: MeshVTK.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_surf(self, value): """setter of surf""" try: # Check the type check_var("surf", value, "dict") except CheckTypeError: check_var("surf", value, "pyvista.core.pointset.PolyData") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._surf = loads(value["serialized"].encode("ISO-8859-2")) else: self._surf = value # Pyvista object of the outer surface # Type : pyvista.core.pointset.PolyData
Example #10
Source File: test_context.py From daskos with Apache License 2.0 | 6 votes |
def test_ephemeral_persisting(zk, dsk2): with Persist(zk, name="dsk2", ns="/test/dags", ephemeral=True): with Ran() as r: assert get(dsk2, 'e') == 10 assert r.steps == ['e'] with Ran() as r: assert get(dsk2, 's') == 0.4 assert r.steps == ['f', 's'] with Ran() as r: assert get(dsk2, 's') == 0.4 assert r.steps == [] assert loads(zk.get("/test/dags/dsk2/e")[0]) == 10 with pytest.raises(NoNodeError): zk.get("/test/dags/dsk2/e")
Example #11
Source File: test_engine.py From pyPESTO with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_pickle_objective(): """Test serializing objectives (needed for MultiThreadEngine).""" petab_importer = pypesto.petab.PetabImporter.from_yaml( folder_base + "Zheng_PNAS2012/Zheng_PNAS2012.yaml") objective = petab_importer.create_objective() objective.amici_solver.setSensitivityMethod( amici.SensitivityMethod_adjoint) objective2 = pickle.loads(pickle.dumps(objective)) # test some properties assert objective.amici_model.getParameterIds() \ == objective2.amici_model.getParameterIds() assert objective.amici_solver.getSensitivityOrder() \ == objective2.amici_solver.getSensitivityOrder() assert objective.amici_solver.getSensitivityMethod() \ == objective2.amici_solver.getSensitivityMethod() assert len(objective.edatas) == len(objective2.edatas)
Example #12
Source File: experiment.py From ProMP with MIT License | 6 votes |
def get_args(key=None, default=None): args = __get_arg_config() if args.args_data: if args.use_cloudpickle: import cloudpickle assert args.cloudpickle_version == cloudpickle.__version__, "Cloudpickle versions do not match! (host) %s vs (remote) %s" % (args.cloudpickle_version, cloudpickle.__version__) data = cloudpickle.loads(base64.b64decode(args.args_data)) else: data = pickle.loads(base64.b64decode(args.args_data)) else: data = {} if key is not None: return data.get(key, default) return data
Example #13
Source File: agent.py From osbrain with Apache License 2.0 | 6 votes |
def _handle_loopback(self, message): """ Handle incoming messages in the loopback socket. """ header, data = cloudpickle.loads(message) if header == 'EXECUTE_METHOD': method, args, kwargs = data try: response = getattr(self, method)(*args, **kwargs) except Exception as error: yield format_method_exception(error, method, args, kwargs) raise yield response or True else: error = 'Unrecognized loopback message: {} {}'.format(header, data) self.log_error(error) yield error
Example #14
Source File: OptiGenAlgNsga2Deap.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_toolbox(self, value): """setter of toolbox""" try: # Check the type check_var("toolbox", value, "dict") except CheckTypeError: check_var("toolbox", value, "deap.base.Toolbox") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._toolbox = loads(value["serialized"].encode("ISO-8859-2")) else: self._toolbox = value # DEAP toolbox # Type : deap.base.Toolbox
Example #15
Source File: OptiProblem.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_eval_func(self, value): """setter of eval_func""" try: check_var("eval_func", value, "list") except CheckTypeError: check_var("eval_func", value, "function") if isinstance(value, list): # Load function from saved dict self._eval_func = [loads(value[0].encode("ISO-8859-2")), value[1]] elif value is None: self._eval_func = [None, None] elif callable(value): self._eval_func = [value, getsource(value)] else: raise TypeError( "Expected function or list from a saved file, got: " + str(type(value)) ) # Function to evaluate before computing obj function and constraints # Type : function
Example #16
Source File: OutStruct.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_Yr(self, value): """setter of Yr""" try: # Check the type check_var("Yr", value, "dict") except CheckTypeError: check_var("Yr", value, "SciDataTool.Classes.DataND.DataND") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._Yr = loads(value["serialized"].encode("ISO-8859-2")) else: self._Yr = value # Displacement output # Type : SciDataTool.Classes.DataND.DataND
Example #17
Source File: OutStruct.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_Vr(self, value): """setter of Vr""" try: # Check the type check_var("Vr", value, "dict") except CheckTypeError: check_var("Vr", value, "SciDataTool.Classes.DataND.DataND") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._Vr = loads(value["serialized"].encode("ISO-8859-2")) else: self._Vr = value # Velocity output # Type : SciDataTool.Classes.DataND.DataND
Example #18
Source File: OutStruct.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_Ar(self, value): """setter of Ar""" try: # Check the type check_var("Ar", value, "dict") except CheckTypeError: check_var("Ar", value, "SciDataTool.Classes.DataND.DataND") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._Ar = loads(value["serialized"].encode("ISO-8859-2")) else: self._Ar = value # Acceleration output # Type : SciDataTool.Classes.DataND.DataND
Example #19
Source File: OutForce.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_Prad(self, value): """setter of Prad""" try: # Check the type check_var("Prad", value, "dict") except CheckTypeError: check_var("Prad", value, "SciDataTool.Classes.DataND.DataND") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._Prad = loads(value["serialized"].encode("ISO-8859-2")) else: self._Prad = value # Radial magnetic air-gap surface force # Type : SciDataTool.Classes.DataND.DataND
Example #20
Source File: OptiConstraint.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_get_variable(self, value): """setter of get_variable""" try: check_var("get_variable", value, "list") except CheckTypeError: check_var("get_variable", value, "function") if isinstance(value, list): # Load function from saved dict self._get_variable = [loads(value[0].encode("ISO-8859-2")), value[1]] elif value is None: self._get_variable = [None, None] elif callable(value): self._get_variable = [value, getsource(value)] else: raise TypeError( "Expected function or list from a saved file, got: " + str(type(value)) ) # Function to get the variable to compare # Type : function
Example #21
Source File: OptiObjFunc.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_func(self, value): """setter of func""" try: check_var("func", value, "list") except CheckTypeError: check_var("func", value, "function") if isinstance(value, list): # Load function from saved dict self._func = [loads(value[0].encode("ISO-8859-2")), value[1]] elif value is None: self._func = [None, None] elif callable(value): self._func = [value, getsource(value)] else: raise TypeError( "Expected function or list from a saved file, got: " + str(type(value)) ) # Function to minimize # Type : function
Example #22
Source File: partition_manager.py From modin with Apache License 2.0 | 6 votes |
def deploy_func(df, other, apply_func, call_queue_df=None, call_queue_other=None): if call_queue_df is not None and len(call_queue_df) > 0: for call, kwargs in call_queue_df: if isinstance(call, bytes): call = pkl.loads(call) if isinstance(kwargs, bytes): kwargs = pkl.loads(kwargs) df = call(df, **kwargs) if call_queue_other is not None and len(call_queue_other) > 0: for call, kwargs in call_queue_other: if isinstance(call, bytes): call = pkl.loads(call) if isinstance(kwargs, bytes): kwargs = pkl.loads(kwargs) other = call(other, **kwargs) if isinstance(apply_func, bytes): apply_func = pkl.loads(apply_func) return apply_func(df, other)
Example #23
Source File: mpi.py From abcpy with BSD 3-Clause Clear License | 6 votes |
def run_function(self, function_packed, data_item): """ Receives a serialized function unpack it and run it Passes the model communicator if ther is more than one process per model """ func = cloudpickle.loads(function_packed) res = None try: if(self.mpimanager.get_model_size() > 1): npc = NestedParallelizationControllerMPI(self.mpimanager.get_model_communicator()) if self.mpimanager.get_model_communicator().Get_rank() == 0: self.logger.debug("Executing map function on master rank 0.") res = func(data_item, npc=npc) del(npc) else: res = func(data_item) except Exception as e: msg = "Exception occured while calling the map function {}: ".format(func.__name__) res = type(e)(msg + str(e)) return res
Example #24
Source File: utils.py From rltime with Apache License 2.0 | 6 votes |
def tcp_recv_object(sock, chunk_size=1048576): """Receives a python object sent by 'tcp_send_object' over TCP. Returns the received object, or None if connection closed""" metadata = sock.recv(8) if len(metadata) != 8: # Connection closed return None sz, compressed = struct.unpack("II", metadata) buffer = bytearray(sz) buffer_view = memoryview(buffer) offset = 0 while sz > 0: amount_get = min(chunk_size, sz) amount_read = sock.recv_into(buffer_view[offset:], amount_get) if not amount_read: return None # Connection closed sz -= amount_read offset += amount_read if compressed: import lz4.frame buffer = lz4.frame.decompress(buffer) return cloudpickle.loads(buffer)
Example #25
Source File: test_meta_evaluator.py From garage with MIT License | 6 votes |
def test_pickle_meta_evaluator(): set_seed(100) tasks = SetTaskSampler(lambda: GarageEnv(PointEnv())) max_path_length = 200 env = GarageEnv(PointEnv()) n_traj = 3 with tempfile.TemporaryDirectory() as log_dir_name: runner = LocalRunner( SnapshotConfig(snapshot_dir=log_dir_name, snapshot_mode='last', snapshot_gap=1)) meta_eval = MetaEvaluator(test_task_sampler=tasks, max_path_length=max_path_length, n_test_tasks=10, n_exploration_traj=n_traj) policy = RandomPolicy(env.spec.action_space) algo = MockAlgo(env, policy, max_path_length, n_traj, meta_eval) runner.setup(algo, env) log_file = tempfile.NamedTemporaryFile() csv_output = CsvOutput(log_file.name) logger.add_output(csv_output) meta_eval.evaluate(algo) meta_eval_pickle = cloudpickle.dumps(meta_eval) meta_eval2 = cloudpickle.loads(meta_eval_pickle) meta_eval2.evaluate(algo)
Example #26
Source File: distributed_epi_sampler.py From machina with MIT License | 6 votes |
def scatter_from_master(self, key): """ master: set `key` to DB, then set trigger and wait sampler completion sampler: wait trigger, then get `key` and reset trigger """ if self.rank < 0: obj = getattr(self, key) self.r.set(key, cloudpickle.dumps(obj)) trigger = ['{}_trigger_{}'.format( key, rank) for rank in range(self.world_size)] self.wait_trigger_completion(trigger) else: trigger = '{}_trigger_{}'.format(key, self.rank) self.wait_trigger(trigger) obj = cloudpickle.loads(self.r.get(key)) setattr(self, key, obj) self.reset_trigger(trigger)
Example #27
Source File: remote.py From leap with MIT License | 6 votes |
def __init__( self, env, policy, exploration_policy, max_path_length, train_rollout_function, eval_rollout_function, ): torch.set_num_threads(1) self._env = env self._policy = policy self._exploration_policy = exploration_policy self._max_path_length = max_path_length self.train_rollout_function = cloudpickle.loads(train_rollout_function) self.eval_rollout_function = cloudpickle.loads(eval_rollout_function)
Example #28
Source File: model_loader.py From Hunch with Apache License 2.0 | 6 votes |
def deserialize_model(self, blob, model_id, model_version): """ Deserializes the given blob to Model object which can be used for predictions :param blob: :param model_id: :param model_version: :return: """ model_obj = cloudpickle.loads(blob) if not isinstance(model_obj, dict): # Is a plain cloud-pickled model return model_obj if isinstance(model_obj, dict) and 'custom_package_blob' in model_obj.keys(): self.__custom_package_deployer.install_custom_package(blob, model_id, model_version, delete_previous = True) if 'serialization_mechanism' in model_obj and model_obj['serialization_mechanism'] == 'asm': # Is an ASM model self.__extract_model_resources(model_obj, model_id, model_version) self.__extract_prediction_module(model_obj, model_id, model_version) return self.__deserialize_asm_model(model_id, model_version) # tar_file_content = model_obj['custom_package_blob'] # custom_package_name = model_obj['custom_package_name'] # custom_package_version = model_obj['custom_package_version'] return cloudpickle.loads(model_obj['model_blob']) # Is a cloud-pickled model with custom code
Example #29
Source File: OutElec.py From pyleecan with Apache License 2.0 | 6 votes |
def _set_mmf_unit(self, value): """setter of mmf_unit""" try: # Check the type check_var("mmf_unit", value, "dict") except CheckTypeError: check_var("mmf_unit", value, "SciDataTool.Classes.DataND.DataND") # property can be set from a list to handle loads if ( type(value) == dict ): # Load type from saved dict {"type":type(value),"str": str(value),"serialized": serialized(value)] self._mmf_unit = loads(value["serialized"].encode("ISO-8859-2")) else: self._mmf_unit = value # Unit magnetomotive force # Type : SciDataTool.Classes.DataND.DataND
Example #30
Source File: partition.py From modin with Apache License 2.0 | 5 votes |
def apply_list_of_funcs(funcs, df): for func, kwargs in funcs: if isinstance(func, bytes): func = pkl.loads(func) df = func(df, **kwargs) return df