Python keras.activations.serialize() Examples
The following are 30
code examples of keras.activations.serialize().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.activations
, or try the search function
.
Example #1
Source File: PhasedLSTM.py From PhasedLSTM-Keras with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(PhasedLSTM, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #2
Source File: cosineconvolution2d.py From keras-contrib with MIT License | 6 votes |
def get_config(self): config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'activation': activations.serialize(self.activation), 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'use_bias': self.use_bias} base_config = super(CosineConvolution2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #3
Source File: dense.py From deep_complex_networks with MIT License | 6 votes |
def get_config(self): if self.kernel_initializer in {'complex'}: ki = self.kernel_initializer else: ki = initializers.serialize(self.kernel_initializer) config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'init_criterion': self.init_criterion, 'kernel_initializer': ki, 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'seed': self.seed, } base_config = super(ComplexDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #4
Source File: qrnn.py From embedding-as-service with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'window_size': self.window_size, 'stride': self.strides[0], 'return_sequences': self.return_sequences, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll, 'use_bias': self.use_bias, 'dropout': self.dropout, 'activation': activations.serialize(self.activation), 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'input_length': self.input_length} base_config = super(QRNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #5
Source File: nested_lstm.py From Nested-LSTM with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'depth': self.depth, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'cell_activation': activations.serialize(self.cell_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(NestedLSTM, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items()))
Example #6
Source File: nested_lstm.py From Nested-LSTM with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'depth': self.depth, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'cell_activation': activations.serialize(self.cell_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(NestedLSTMCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #7
Source File: ind_rnn.py From Keras-IndRNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'recurrent_clip_min': self.recurrent_clip_min, 'recurrent_clip_max': self.recurrent_clip_max, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(IndRNN, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items()))
Example #8
Source File: ind_rnn.py From Keras-IndRNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'recurrent_clip_min': self.recurrent_clip_min, 'recurrent_clip_max': self.recurrent_clip_max, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(IndRNNCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #9
Source File: qrnn.py From nn_playground with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'window_size': self.window_size, 'stride': self.strides[0], 'return_sequences': self.return_sequences, 'go_backwards': self.go_backwards, 'stateful': self.stateful, 'unroll': self.unroll, 'use_bias': self.use_bias, 'dropout': self.dropout, 'activation': activations.serialize(self.activation), 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'input_length': self.input_length} base_config = super(QRNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #10
Source File: gcnn.py From nn_playground with MIT License | 6 votes |
def get_config(self): config = {'output_dim': self.output_dim, 'window_size': self.window_size, 'init': self.init.get_config(), 'stride': self.strides[0], 'activation': activations.serialize(self.activation), 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activy_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'use_bias': self.use_bias, 'input_dim': self.input_dim, 'input_length': self.input_length} base_config = super(GCNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #11
Source File: layers.py From sequence-tagging-ner with Apache License 2.0 | 6 votes |
def get_config(self): config = {'units': self.units, 'learn_mode': self.learn_mode, 'test_mode': self.test_mode, 'use_boundary': self.use_boundary, 'use_bias': self.use_bias, 'sparse_target': self.sparse_target, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'chain_initializer': initializers.serialize(self.chain_initializer), 'boundary_initializer': initializers.serialize(self.boundary_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'activation': activations.serialize(self.activation), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'chain_regularizer': regularizers.serialize(self.chain_regularizer), 'boundary_regularizer': regularizers.serialize(self.boundary_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'chain_constraint': constraints.serialize(self.chain_constraint), 'boundary_constraint': constraints.serialize(self.boundary_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'unroll': self.unroll} base_config = super(CRF, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #12
Source File: layers.py From anago with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'learn_mode': self.learn_mode, 'test_mode': self.test_mode, 'use_boundary': self.use_boundary, 'use_bias': self.use_bias, 'sparse_target': self.sparse_target, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'chain_initializer': initializers.serialize(self.chain_initializer), 'boundary_initializer': initializers.serialize(self.boundary_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'activation': activations.serialize(self.activation), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'chain_regularizer': regularizers.serialize(self.chain_regularizer), 'boundary_regularizer': regularizers.serialize(self.boundary_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'chain_constraint': constraints.serialize(self.chain_constraint), 'boundary_constraint': constraints.serialize(self.boundary_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'unroll': self.unroll} base_config = super(CRF, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #13
Source File: layers.py From indic_tagger with Apache License 2.0 | 6 votes |
def get_config(self): config = {'units': self.units, 'learn_mode': self.learn_mode, 'test_mode': self.test_mode, 'use_boundary': self.use_boundary, 'use_bias': self.use_bias, 'sparse_target': self.sparse_target, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'chain_initializer': initializers.serialize(self.chain_initializer), 'boundary_initializer': initializers.serialize(self.boundary_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'activation': activations.serialize(self.activation), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'chain_regularizer': regularizers.serialize(self.chain_regularizer), 'boundary_regularizer': regularizers.serialize(self.boundary_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'chain_constraint': constraints.serialize(self.chain_constraint), 'boundary_constraint': constraints.serialize(self.boundary_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'unroll': self.unroll} base_config = super(CRF, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #14
Source File: TTRNN.py From TT_RNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(TT_LSTM, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #15
Source File: nascell.py From neural-architecture-search with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'projection_units': self.projection_units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'projection_activation': activations.serialize(self.projection_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'projection_initializer': initializers.serialize(self.projection_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'projection_regularizer': regularizers.serialize(self.projection_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'projection_constraint': constraints.serialize(self.projection_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(NASCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #16
Source File: TTRNN.py From TT_RNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(TT_GRU, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #17
Source File: sn.py From Coloring-greyscale-images with MIT License | 6 votes |
def get_config(self): config = { 'rank': self.rank, 'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(_Conv, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #18
Source File: dense.py From Quaternion-Convolutional-Neural-Networks-for-End-to-End-Automatic-Speech-Recognition with GNU General Public License v3.0 | 6 votes |
def get_config(self): if self.kernel_initializer == 'quaternion': ki = self.kernel_init else: ki = initializers.serialize(self.kernel_initializer) config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'init_criterion': self.init_criterion, 'kernel_initializer': ki, 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'seed': self.seed, } base_config = super(QuaternionDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #19
Source File: TTRNN.py From TT_RNN with MIT License | 6 votes |
def get_config(self): config = {'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout} base_config = super(TT_RNN, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #20
Source File: DenseMoE.py From mixture-of-experts with GNU General Public License v3.0 | 6 votes |
def get_config(self): config = { 'units': self.units, 'n_experts':self.n_experts, 'expert_activation': activations.serialize(self.expert_activation), 'gating_activation': activations.serialize(self.gating_activation), 'use_expert_bias': self.use_expert_bias, 'use_gating_bias': self.use_gating_bias, 'expert_kernel_initializer_scale': self.expert_kernel_initializer_scale, 'gating_kernel_initializer_scale': self.gating_kernel_initializer_scale, 'expert_bias_initializer': initializers.serialize(self.expert_bias_initializer), 'gating_bias_initializer': initializers.serialize(self.gating_bias_initializer), 'expert_kernel_regularizer': regularizers.serialize(self.expert_kernel_regularizer), 'gating_kernel_regularizer': regularizers.serialize(self.gating_kernel_regularizer), 'expert_bias_regularizer': regularizers.serialize(self.expert_bias_regularizer), 'gating_bias_regularizer': regularizers.serialize(self.gating_bias_regularizer), 'expert_kernel_constraint': constraints.serialize(self.expert_kernel_constraint), 'gating_kernel_constraint': constraints.serialize(self.gating_kernel_constraint), 'expert_bias_constraint': constraints.serialize(self.expert_bias_constraint), 'gating_bias_constraint': constraints.serialize(self.gating_bias_constraint), 'activity_regularizer': regularizers.serialize(self.activity_regularizer) } base_config = super(DenseMoE, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #21
Source File: hadamard.py From landmark-recognition-challenge with GNU General Public License v3.0 | 5 votes |
def get_config(self): config = { 'output_dim': self.output_dim, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'l2_normalize': self.l2_normalize, 'output_raw_logits' : self.output_raw_logits, } base_config = super(HadamardClassifier, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #22
Source File: custom.py From graph-representation-learning with MIT License | 5 votes |
def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(DenseTied, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #23
Source File: ConvolutionalMoE.py From mixture-of-experts with GNU General Public License v3.0 | 5 votes |
def get_config(self): config = { 'rank': self.rank, 'n_filters': self.n_filters, 'n_experts_per_filter':n_experts_per_filter, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'expert_activation': activations.serialize(self.expert_activation), 'gating_activation': activations.serialize(self.gating_activation), 'use_expert_bias': self.use_expert_bias, 'use_gating_bias': self.use_gating_bias, 'expert_kernel_initializer_scale':self.expert_kernel_initializer_scale, 'gating_kernel_initializer_scale':self.gating_kernel_initializer_scale, 'expert_bias_initializer': initializers.serialize(self.expert_bias_initializer), 'gating_bias_initializer': initializers.serialize(self.gating_bias_initializer), 'expert_kernel_regularizer': regularizers.serialize(self.expert_kernel_regularizer), 'gating_kernel_regularizer': regularizers.serialize(self.gating_kernel_regularizer), 'expert_bias_regularizer': regularizers.serialize(self.expert_bias_regularizer), 'gating_bias_regularizer': regularizers.serialize(self.gating_bias_regularizer), 'expert_kernel_constraint': constraints.serialize(self.expert_kernel_constraint), 'gating_kernel_constraint': constraints.serialize(self.gating_kernel_constraint), 'expert_bias_constraint': constraints.serialize(self.expert_bias_constraint), 'gating_bias_constraint': constraints.serialize(self.gating_bias_constraint), 'activity_regularizer': regularizers.serialize(self.activity_regularizer) } base_config = super(_ConvMoE, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #24
Source File: activations_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_serialization(): all_activations = ['softmax', 'relu', 'elu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear', 'softplus', 'softsign', 'selu'] for name in all_activations: fn = activations.get(name) ref_fn = getattr(activations, name) assert fn == ref_fn config = activations.serialize(fn) fn = activations.deserialize(config) assert fn == ref_fn
Example #25
Source File: activations_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_serialization(): all_activations = ['softmax', 'relu', 'elu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear', 'softplus', 'softsign', 'selu'] for name in all_activations: fn = activations.get(name) ref_fn = getattr(activations, name) assert fn == ref_fn config = activations.serialize(fn) fn = activations.deserialize(config) assert fn == ref_fn
Example #26
Source File: attention.py From MusiteDeep with GNU General Public License v2.0 | 5 votes |
def get_config(self): config = { 'hidden':self.hidden, 'activation': activations.serialize(self.activation), 'init': initializers.serialize(self.init), 'W_regularizer': regularizers.serialize(self.W_regularizer), 'W0_regularizer': regularizers.serialize(self.W0_regularizer), 'W_constraint':constraints.serialize(self.W_constraint), 'W0_constraint':constraints.serialize(self.W0_constraint) } base_config = super(Attention, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #27
Source File: activations_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_serialization(): all_activations = ['softmax', 'relu', 'elu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear', 'softplus', 'softsign', 'selu'] for name in all_activations: fn = activations.get(name) ref_fn = getattr(activations, name) assert fn == ref_fn config = activations.serialize(fn) fn = activations.deserialize(config) assert fn == ref_fn
Example #28
Source File: mmoe.py From keras-mmoe with MIT License | 5 votes |
def get_config(self): """ Method for returning the configuration of the MMoE layer. :return: Config dictionary """ config = { 'units': self.units, 'num_experts': self.num_experts, 'num_tasks': self.num_tasks, 'use_expert_bias': self.use_expert_bias, 'use_gate_bias': self.use_gate_bias, 'expert_activation': activations.serialize(self.expert_activation), 'gate_activation': activations.serialize(self.gate_activation), 'expert_bias_initializer': initializers.serialize(self.expert_bias_initializer), 'gate_bias_initializer': initializers.serialize(self.gate_bias_initializer), 'expert_bias_regularizer': regularizers.serialize(self.expert_bias_regularizer), 'gate_bias_regularizer': regularizers.serialize(self.gate_bias_regularizer), 'expert_bias_constraint': constraints.serialize(self.expert_bias_constraint), 'gate_bias_constraint': constraints.serialize(self.gate_bias_constraint), 'expert_kernel_initializer': initializers.serialize(self.expert_kernel_initializer), 'gate_kernel_initializer': initializers.serialize(self.gate_kernel_initializer), 'expert_kernel_regularizer': regularizers.serialize(self.expert_kernel_regularizer), 'gate_kernel_regularizer': regularizers.serialize(self.gate_kernel_regularizer), 'expert_kernel_constraint': constraints.serialize(self.expert_kernel_constraint), 'gate_kernel_constraint': constraints.serialize(self.gate_kernel_constraint), 'activity_regularizer': regularizers.serialize(self.activity_regularizer) } base_config = super(MMoE, self).get_config() return dict(list(base_config.items()) + list(config.items()))
Example #29
Source File: activations_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_serialization(): all_activations = ['softmax', 'relu', 'elu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear', 'softplus', 'softsign', 'selu'] for name in all_activations: fn = activations.get(name) ref_fn = getattr(activations, name) assert fn == ref_fn config = activations.serialize(fn) fn = activations.deserialize(config) assert fn == ref_fn
Example #30
Source File: core.py From keras-contrib with MIT License | 5 votes |
def get_config(self): config = { 'units': self.units, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'activation': activations.serialize(self.activation), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'use_bias': self.use_bias } base_config = super(CosineDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))