Python tensorflow.python.ops.clip_ops.clip_by_global_norm() Examples
The following are 22
code examples of tensorflow.python.ops.clip_ops.clip_by_global_norm().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.clip_ops
, or try the search function
.
Example #1
Source File: composable_model.py From lambda-packs with MIT License | 6 votes |
def get_train_step(self, loss): """Returns the ops to run to perform a training step on this estimator. Args: loss: The loss to use when calculating gradients. Returns: The ops to run to perform a training step. """ my_vars = self._get_vars() if not (self._get_feature_columns() or my_vars): return [] grads = gradients.gradients(loss, my_vars) if self._gradient_clip_norm: grads, _ = clip_ops.clip_by_global_norm(grads, self._gradient_clip_norm) return [self._get_optimizer().apply_gradients(zip(grads, my_vars))]
Example #2
Source File: composable_model.py From keras-lambda with MIT License | 6 votes |
def get_train_step(self, loss): """Returns the ops to run to perform a training step on this estimator. Args: loss: The loss to use when calculating gradients. Returns: The ops to run to perform a training step. """ my_vars = self._get_vars() if not (self._get_feature_columns() or my_vars): return [] grads = gradients.gradients(loss, my_vars) if self._gradient_clip_norm: grads, _ = clip_ops.clip_by_global_norm(grads, self._gradient_clip_norm) return [self._get_optimizer().apply_gradients(zip(grads, my_vars))]
Example #3
Source File: composable_model.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def get_train_step(self, loss): """Returns the ops to run to perform a training step on this estimator. Args: loss: The loss to use when calculating gradients. Returns: The ops to run to perform a training step. """ my_vars = self._get_vars() if not (self._get_feature_columns() or my_vars): return [] grads = gradients.gradients(loss, my_vars) if self._gradient_clip_norm: grads, _ = clip_ops.clip_by_global_norm(grads, self._gradient_clip_norm) return [self._get_optimizer().apply_gradients(zip(grads, my_vars))]
Example #4
Source File: composable_model.py From deep_image_model with Apache License 2.0 | 6 votes |
def get_train_step(self, loss): """Returns the ops to run to perform a training step on this estimator. Args: loss: The loss to use when calculating gradients. Returns: The ops to run to perform a training step. """ my_vars = self._get_vars() if not (self._get_feature_columns() or my_vars): return [] grads = gradients.gradients(loss, my_vars) if self._gradient_clip_norm: grads, _ = clip_ops.clip_by_global_norm(grads, self._gradient_clip_norm) return [self._get_optimizer().apply_gradients(zip(grads, my_vars))]
Example #5
Source File: composable_model.py From deep_image_model with Apache License 2.0 | 6 votes |
def __init__(self, num_label_columns, optimizer, gradient_clip_norm, num_ps_replicas, scope): """Common initialization for all _ComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Scope for variables created in this model. """ self._num_label_columns = num_label_columns self._optimizer = optimizer self._gradient_clip_norm = gradient_clip_norm self._num_ps_replicas = num_ps_replicas self._scope = scope self._feature_columns = None
Example #6
Source File: optimizers.py From tf-slim with Apache License 2.0 | 5 votes |
def _clip_gradients_by_norm(grads_and_vars, clip_gradients): """Clips gradients by global norm.""" gradients, variables = zip(*grads_and_vars) clipped_gradients, _ = clip_ops.clip_by_global_norm(gradients, clip_gradients) return list(zip(clipped_gradients, variables))
Example #7
Source File: optimizers.py From keras-lambda with MIT License | 5 votes |
def _clip_gradients_by_norm(grads_and_vars, clip_gradients): """Clips gradients by global norm.""" gradients, variables = zip(*grads_and_vars) clipped_gradients, _ = clip_ops.clip_by_global_norm(gradients, clip_gradients) return list(zip(clipped_gradients, variables))
Example #8
Source File: composable_model.py From keras-lambda with MIT License | 5 votes |
def __init__(self, num_label_columns, optimizer=None, _joint_weights=False, gradient_clip_norm=None, num_ps_replicas=0, scope=None, trainable=True): """Initializes LinearComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. _joint_weights: If True use a single (possibly partitioned) variable to store all weights in this model. Faster, but requires that all feature columns are sparse and have the 'sum' combiner. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If scope is not supplied, it will default to 'linear'. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ scope = "linear" if not scope else scope super(LinearComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope, trainable=trainable) self._joint_weights = _joint_weights
Example #9
Source File: composable_model.py From keras-lambda with MIT License | 5 votes |
def __init__(self, num_label_columns, optimizer, gradient_clip_norm, num_ps_replicas, scope, trainable=True): """Common initialization for all _ComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Scope for variables created in this model. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ self._num_label_columns = num_label_columns self._optimizer = optimizer self._gradient_clip_norm = gradient_clip_norm self._num_ps_replicas = num_ps_replicas self._scope = scope self._trainable = trainable self._feature_columns = None
Example #10
Source File: dynamic_rnn_estimator.py From deep_image_model with Apache License 2.0 | 5 votes |
def _process_gradients(self, gradients_vars): """Process gradients (e.g. clipping) before applying them to weights.""" with ops.name_scope('process_gradients'): gradients, variables = zip(*gradients_vars) if self._gradient_clipping_norm is not None: gradients, _ = clip_ops.clip_by_global_norm( gradients, self._gradient_clipping_norm) return zip(gradients, variables)
Example #11
Source File: composable_model.py From deep_image_model with Apache License 2.0 | 5 votes |
def __init__(self, num_label_columns, hidden_units, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, num_ps_replicas=0, scope=None): """Initializes DNNComposableModel objects. Args: num_label_columns: The number of label columns. hidden_units: List of hidden units per layer. All layers are fully connected. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If not scope is supplied, one is generated. """ scope = "dnn" if not scope else scope super(DNNComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope) self._hidden_units = hidden_units self._activation_fn = activation_fn self._dropout = dropout
Example #12
Source File: composable_model.py From deep_image_model with Apache License 2.0 | 5 votes |
def __init__(self, num_label_columns, optimizer=None, _joint_weights=False, gradient_clip_norm=None, num_ps_replicas=0, scope=None): """Initializes LinearComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. _joint_weights: If True use a single (possibly partitioned) variable to store all weights in this model. Faster, but requires that all feature columns are sparse and have the 'sum' combiner. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If scope is not supplied, it will default to 'linear'. """ scope = "linear" if not scope else scope super(LinearComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope) self._joint_weights = _joint_weights
Example #13
Source File: optimizers.py From tensornets with MIT License | 5 votes |
def _clip_gradients_by_norm(grads_and_vars, clip_gradients): """Clips gradients by global norm.""" gradients, variables = zip(*grads_and_vars) clipped_gradients, _ = clip_ops.clip_by_global_norm(gradients, clip_gradients) return list(zip(clipped_gradients, variables))
Example #14
Source File: optimizers.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _clip_gradients_by_norm(grads_and_vars, clip_gradients): """Clips gradients by global norm.""" gradients, variables = zip(*grads_and_vars) clipped_gradients, _ = clip_ops.clip_by_global_norm(gradients, clip_gradients) return list(zip(clipped_gradients, variables))
Example #15
Source File: composable_model.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def __init__(self, num_label_columns, optimizer=None, _joint_weights=False, gradient_clip_norm=None, num_ps_replicas=0, scope=None, trainable=True): """Initializes LinearComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. _joint_weights: If True use a single (possibly partitioned) variable to store all weights in this model. Faster, but requires that all feature columns are sparse and have the 'sum' combiner. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If scope is not supplied, it will default to 'linear'. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ scope = "linear" if not scope else scope super(LinearComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope, trainable=trainable) self._joint_weights = _joint_weights
Example #16
Source File: composable_model.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def __init__(self, num_label_columns, optimizer, gradient_clip_norm, num_ps_replicas, scope, trainable=True): """Common initialization for all _ComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Scope for variables created in this model. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ self._num_label_columns = num_label_columns self._optimizer = optimizer self._gradient_clip_norm = gradient_clip_norm self._num_ps_replicas = num_ps_replicas self._scope = scope self._trainable = trainable self._feature_columns = None
Example #17
Source File: composable_model.py From lambda-packs with MIT License | 5 votes |
def __init__(self, num_label_columns, optimizer=None, _joint_weights=False, gradient_clip_norm=None, num_ps_replicas=0, scope=None, trainable=True): """Initializes LinearComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. _joint_weights: If True use a single (possibly partitioned) variable to store all weights in this model. Faster, but requires that all feature columns are sparse and have the 'sum' combiner. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If scope is not supplied, it will default to 'linear'. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ scope = "linear" if not scope else scope super(LinearComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope, trainable=trainable) self._joint_weights = _joint_weights
Example #18
Source File: composable_model.py From lambda-packs with MIT License | 5 votes |
def __init__(self, num_label_columns, optimizer, gradient_clip_norm, num_ps_replicas, scope, trainable=True): """Common initialization for all _ComposableModel objects. Args: num_label_columns: The number of label columns. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Scope for variables created in this model. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ self._num_label_columns = num_label_columns self._optimizer = optimizer self._gradient_clip_norm = gradient_clip_norm self._num_ps_replicas = num_ps_replicas self._scope = scope self._trainable = trainable self._feature_columns = None
Example #19
Source File: composable_model.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def __init__(self, num_label_columns, hidden_units, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, num_ps_replicas=0, scope=None, trainable=True): """Initializes DNNComposableModel objects. Args: num_label_columns: The number of label columns. hidden_units: List of hidden units per layer. All layers are fully connected. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If not scope is supplied, one is generated. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ scope = "dnn" if not scope else scope super(DNNComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope, trainable=trainable) self._hidden_units = hidden_units self._activation_fn = activation_fn self._dropout = dropout
Example #20
Source File: composable_model.py From lambda-packs with MIT License | 4 votes |
def __init__(self, num_label_columns, hidden_units, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, num_ps_replicas=0, scope=None, trainable=True): """Initializes DNNComposableModel objects. Args: num_label_columns: The number of label columns. hidden_units: List of hidden units per layer. All layers are fully connected. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If not scope is supplied, one is generated. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ scope = "dnn" if not scope else scope super(DNNComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope, trainable=trainable) self._hidden_units = hidden_units self._activation_fn = activation_fn self._dropout = dropout
Example #21
Source File: composable_model.py From keras-lambda with MIT License | 4 votes |
def __init__(self, num_label_columns, hidden_units, optimizer=None, activation_fn=nn.relu, dropout=None, gradient_clip_norm=None, num_ps_replicas=0, scope=None, trainable=True): """Initializes DNNComposableModel objects. Args: num_label_columns: The number of label columns. hidden_units: List of hidden units per layer. All layers are fully connected. optimizer: An instance of `tf.Optimizer` used to apply gradients to the model. If `None`, will use a FTRL optimizer. activation_fn: Activation function applied to each layer. If `None`, will use `tf.nn.relu`. dropout: When not None, the probability we will drop out a given coordinate. gradient_clip_norm: A float > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See tf.clip_by_global_norm for more details. num_ps_replicas: The number of parameter server replicas. scope: Optional scope for variables created in this model. If not scope is supplied, one is generated. trainable: True if this model contains variables that can be trained. False otherwise (in cases where the variables are used strictly for transforming input labels for training). """ scope = "dnn" if not scope else scope super(DNNComposableModel, self).__init__( num_label_columns=num_label_columns, optimizer=optimizer, gradient_clip_norm=gradient_clip_norm, num_ps_replicas=num_ps_replicas, scope=scope, trainable=trainable) self._hidden_units = hidden_units self._activation_fn = activation_fn self._dropout = dropout
Example #22
Source File: linear.py From lambda-packs with MIT License | 4 votes |
def __init__(self, # _joint_weights: pylint: disable=invalid-name feature_columns, head, model_dir=None, weight_column_name=None, optimizer=None, gradient_clip_norm=None, _joint_weights=False, config=None, feature_engineering_fn=None): """Construct a `LinearEstimator` object. Args: feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from `FeatureColumn`. head: An instance of _Head class. model_dir: Directory to save model parameters, graph, etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. weight_column_name: A string defining feature column name representing weights. It is used to down weight or boost examples during training. It will be multiplied by the loss of the example. optimizer: An instance of `tf.Optimizer` used to train the model. If `None`, will use an Ftrl optimizer. gradient_clip_norm: A `float` > 0. If provided, gradients are clipped to their global norm with this clipping ratio. See `tf.clip_by_global_norm` for more details. _joint_weights: If True use a single (possibly partitioned) variable to store the weights. It's faster, but requires all feature columns are sparse and have the 'sum' combiner. Incompatible with SDCAOptimizer. config: `RunConfig` object to configure the runtime settings. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into the model. Returns: A `LinearEstimator` estimator. Raises: ValueError: if optimizer is not supported, e.g., SDCAOptimizer """ assert feature_columns if isinstance(optimizer, sdca_optimizer.SDCAOptimizer): raise ValueError("LinearEstimator does not support SDCA optimizer.") params = { "head": head, "feature_columns": feature_columns, "optimizer": optimizer, "gradient_clip_norm": gradient_clip_norm, "joint_weights": _joint_weights, } super(LinearEstimator, self).__init__( model_fn=_linear_model_fn, model_dir=model_dir, config=config, params=params, feature_engineering_fn=feature_engineering_fn)