Python torch.nn.Dropout2d() Examples
The following are 30
code examples of torch.nn.Dropout2d().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn
, or try the search function
.
Example #1
Source File: model.py From cat-bbs with MIT License | 9 votes |
def __init__(self): super(Model2, self).__init__() # fine tuning the ResNet helped significantly with the accuracy base_model = MyResNet(BasicBlock, [2, 2, 2, 2]) base_model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) # code needed to deactivate fine tuning of resnet #for param in base_model.parameters(): # param.requires_grad = False self.base_model = base_model self.drop0 = nn.Dropout2d(0.05) self.conv1 = nn.Conv2d(512, 256, 3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(256) self.drop1 = nn.Dropout2d(0.05) self.conv2 = nn.Conv2d(256, 128, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.drop2 = nn.Dropout2d(0.05) self.conv3 = nn.Conv2d(128, 1+9, 3, padding=1, bias=False)
Example #2
Source File: pspnet.py From Single-Human-Parsing-LIP with MIT License | 7 votes |
def __init__(self, n_classes=20, sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet34', pretrained=True): super().__init__() self.feats = getattr(extractors, backend)(pretrained) self.psp = PSPModule(psp_size, 1024, sizes) self.drop_1 = nn.Dropout2d(p=0.3) self.up_1 = PSPUpsample(1024, 256) self.up_2 = PSPUpsample(256, 64) self.up_3 = PSPUpsample(64, 64) self.drop_2 = nn.Dropout2d(p=0.15) self.final = nn.Sequential( nn.Conv2d(64, n_classes, kernel_size=1), nn.LogSoftmax(dim=1) ) self.classifier = nn.Sequential( nn.Linear(deep_features_size, 256), nn.ReLU(), nn.Linear(256, n_classes) )
Example #3
Source File: codec.py From pde-surrogate with MIT License | 6 votes |
def __init__(self, in_features, growth_rate, drop_rate=0., bn_size=8, bottleneck=False): super(_DenseLayer, self).__init__() if bottleneck and in_features > bn_size * growth_rate: self.add_module('norm1', nn.BatchNorm2d(in_features)) self.add_module('relu1', nn.ReLU(inplace=True)) self.add_module('conv1', nn.Conv2d(in_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)) self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)) self.add_module('relu2', nn.ReLU(inplace=True)) self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)) else: self.add_module('norm1', nn.BatchNorm2d(in_features)) self.add_module('relu1', nn.ReLU(inplace=True)) self.add_module('conv1', nn.Conv2d(in_features, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)) if drop_rate > 0: self.add_module('dropout', nn.Dropout2d(p=drop_rate))
Example #4
Source File: erf_blocks.py From Pytorch-Project-Template with MIT License | 6 votes |
def __init__(self, n_channel, drop_rate, dilated): super().__init__() self.conv3x1_1 = nn.Conv2d(n_channel, n_channel, (3, 1), stride=1, padding=(1, 0), bias=True) self.conv1x3_1 = nn.Conv2d(n_channel, n_channel, (1, 3), stride=1, padding=(0, 1), bias=True) self.conv3x1_2 = nn.Conv2d(n_channel, n_channel, (3, 1), stride=1, padding=(1 * dilated, 0), bias=True, dilation=(dilated, 1)) self.conv1x3_2 = nn.Conv2d(n_channel, n_channel, (1, 3), stride=1, padding=(0, 1 * dilated), bias=True, dilation=(1, dilated)) self.bn1 = nn.BatchNorm2d(n_channel, eps=1e-03) self.bn2 = nn.BatchNorm2d(n_channel, eps=1e-03) self.relu = nn.ReLU(inplace=True) self.dropout = nn.Dropout2d(drop_rate)
Example #5
Source File: sadecoder.py From ACAN with MIT License | 6 votes |
def __init__(self, in_channels=2048, key_channels=512, value_channels=2048, height=224, width=304): super(SADecoder, self).__init__() out_channels = 512 self.saconv = SelfAttentionBlock_(in_channels, key_channels, value_channels) self.image_context = nn.Sequential(OrderedDict([ ('avgpool', nn.AvgPool2d((height // 8, width // 8), padding=0)), ('dropout', nn.Dropout2d(0.5, inplace=True)), ('reshape1', Reshape(2048)), ('linear1', nn.Linear(2048, 512)), ('relu1', nn.ReLU(inplace=True)), ('linear2', nn.Linear(512, 512)), ('relu2', nn.ReLU(inplace=True)), ('reshape2', Reshape(512, 1, 1)), ('upsample', nn.Upsample(size=(height // 8, width // 8), mode='bilinear', align_corners=True))])) self.merge = nn.Sequential(OrderedDict([ ('dropout1', nn.Dropout2d(0.5, inplace=True)), ('conv1', nn.Conv2d(value_channels+out_channels, value_channels, kernel_size=1, stride=1)), ('relu', nn.ReLU(inplace=True)), ('dropout2', nn.Dropout2d(0.5, inplace=False))]))
Example #6
Source File: digit_network.py From transferlearning with MIT License | 6 votes |
def __init__(self): super(Network, self).__init__() self.feature = nn.Sequential() self.feature.add_module('f_conv1', nn.Conv2d(3, 64, kernel_size=5)) self.feature.add_module('f_bn1', nn.BatchNorm2d(64)) self.feature.add_module('f_pool1', nn.MaxPool2d(2)) self.feature.add_module('f_relu1', nn.ReLU(True)) self.feature.add_module('f_conv2', nn.Conv2d(64, 50, kernel_size=5)) self.feature.add_module('f_bn2', nn.BatchNorm2d(50)) self.feature.add_module('f_drop1', nn.Dropout2d()) self.feature.add_module('f_pool2', nn.MaxPool2d(2)) self.feature.add_module('f_relu2', nn.ReLU(True)) self.class_classifier = nn.Sequential() self.class_classifier.add_module('c_fc1', nn.Linear(50 * 5 * 5, 100)) self.class_classifier.add_module('c_bn1', nn.BatchNorm1d(100)) self.class_classifier.add_module('c_relu1', nn.ReLU(True)) self.class_classifier.add_module('c_drop1', nn.Dropout2d()) self.class_classifier.add_module('c_fc2', nn.Linear(100, 500)) self.class_classifier.add_module('c_bn2', nn.BatchNorm1d(500)) self.class_classifier.add_module('c_relu2', nn.ReLU(True)) self.class_classifier.add_module('c_fc3', nn.Linear(500, 10))
Example #7
Source File: feature_extractor.py From argus-freesound with MIT License | 6 votes |
def __init__(self, num_classes, input_channels=3, base_size=32, dropout=0.25): super(FeatureExtractor, self).__init__() self.input_channels = input_channels self.base_size = base_size s = base_size self.dropout = dropout self.input_conv = BasicConv2d(input_channels, s, 1) self.conv_1 = BasicConv2d(s * 1, s * 1, 3, padding=1) self.conv_2 = BasicConv2d(s * 1, s * 1, 3, padding=1) self.conv_3 = BasicConv2d(s * 1, s * 2, 3, padding=1) self.conv_4 = BasicConv2d(s * 2, s * 2, 3, padding=1) self.conv_5 = BasicConv2d(s * 2, s * 4, 3, padding=1) self.conv_6 = BasicConv2d(s * 4, s * 4, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.dropout2d = nn.Dropout2d(p=dropout) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(s * 4, num_classes)
Example #8
Source File: deeplabv3.py From pytorch-segmentation-toolbox with MIT License | 6 votes |
def __init__(self, features, inner_features=256, out_features=512, dilations=(12, 24, 36)): super(ASPPModule, self).__init__() self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1,1)), nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), InPlaceABNSync(inner_features)) self.conv2 = nn.Sequential(nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), InPlaceABNSync(inner_features)) self.conv3 = nn.Sequential(nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), InPlaceABNSync(inner_features)) self.conv4 = nn.Sequential(nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), InPlaceABNSync(inner_features)) self.conv5 = nn.Sequential(nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), InPlaceABNSync(inner_features)) self.bottleneck = nn.Sequential( nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), InPlaceABNSync(out_features), nn.Dropout2d(0.1) )
Example #9
Source File: blocks.py From pytorch-UNet with MIT License | 6 votes |
def __init__(self, in_channels, middle_channels, out_channels, dropout=False): super(First2D, self).__init__() layers = [ nn.Conv2d(in_channels, middle_channels, kernel_size=3, padding=1), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), nn.Conv2d(middle_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ] if dropout: assert 0 <= dropout <= 1, 'dropout must be between 0 and 1' layers.append(nn.Dropout2d(p=dropout)) self.first = nn.Sequential(*layers)
Example #10
Source File: blocks.py From pytorch-UNet with MIT License | 6 votes |
def __init__( self, in_channels, middle_channels, out_channels, dropout=False, downsample_kernel=2 ): super(Encoder2D, self).__init__() layers = [ nn.MaxPool2d(kernel_size=downsample_kernel), nn.Conv2d(in_channels, middle_channels, kernel_size=3, padding=1), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), nn.Conv2d(middle_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ] if dropout: assert 0 <= dropout <= 1, 'dropout must be between 0 and 1' layers.append(nn.Dropout2d(p=dropout)) self.encoder = nn.Sequential(*layers)
Example #11
Source File: blocks.py From pytorch-UNet with MIT License | 6 votes |
def __init__(self, in_channels, middle_channels, out_channels, deconv_channels, dropout=False): super(Center2D, self).__init__() layers = [ nn.MaxPool2d(kernel_size=2), nn.Conv2d(in_channels, middle_channels, kernel_size=3, padding=1), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), nn.Conv2d(middle_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.ConvTranspose2d(out_channels, deconv_channels, kernel_size=2, stride=2) ] if dropout: assert 0 <= dropout <= 1, 'dropout must be between 0 and 1' layers.append(nn.Dropout2d(p=dropout)) self.center = nn.Sequential(*layers)
Example #12
Source File: task_net.py From cycada_release with BSD 2-Clause "Simplified" License | 6 votes |
def setup_net(self): self.conv_params = nn.Sequential( nn.Conv2d(self.num_channels, 20, kernel_size=5), nn.MaxPool2d(2), nn.ReLU(), nn.Conv2d(20, 50, kernel_size=5), nn.Dropout2d(p=0.5), nn.MaxPool2d(2), nn.ReLU(), ) self.fc_params = nn.Linear(50*4*4, 500) self.classifier = nn.Sequential( nn.ReLU(), nn.Dropout(p=0.5), nn.Linear(500, self.num_cls) )
Example #13
Source File: erfnet.py From pytorch-semantic-segmentation with MIT License | 6 votes |
def __init__(self, chann, dropprob, dilated): super().__init__() self.conv3x1_1 = nn.Conv2d(chann, chann, (3, 1), stride=1, padding=(1,0), bias=True) self.conv1x3_1 = nn.Conv2d(chann, chann, (1,3), stride=1, padding=(0,1), bias=True) self.bn1 = nn.BatchNorm2d(chann, eps=1e-03) self.conv3x1_2 = nn.Conv2d(chann, chann, (3, 1), stride=1, padding=(1*dilated,0), bias=True, dilation = (dilated,1)) self.conv1x3_2 = nn.Conv2d(chann, chann, (1,3), stride=1, padding=(0,1*dilated), bias=True, dilation = (1, dilated)) self.bn2 = nn.BatchNorm2d(chann, eps=1e-03) self.dropout = nn.Dropout2d(dropprob)
Example #14
Source File: network.py From EMANet with GNU General Public License v3.0 | 6 votes |
def __init__(self, n_classes, n_layers): super().__init__() backbone = resnet(n_layers, settings.STRIDE) self.extractor = nn.Sequential( backbone.conv1, backbone.bn1, backbone.relu, backbone.maxpool, backbone.layer1, backbone.layer2, backbone.layer3, backbone.layer4) self.fc0 = ConvBNReLU(2048, 512, 3, 1, 1, 1) self.emau = EMAU(512, 64, settings.STAGE_NUM) self.fc1 = nn.Sequential( ConvBNReLU(512, 256, 3, 1, 1, 1), nn.Dropout2d(p=0.1)) self.fc2 = nn.Conv2d(256, n_classes, 1) # Put the criterion inside the model to make GPU load balanced self.crit = CrossEntropyLoss2d(ignore_index=settings.IGNORE_LABEL, reduction='none')
Example #15
Source File: basic.py From LEDNet with MIT License | 6 votes |
def __init__(self, channel, dilate=1, drop_prob=0.01): super(SSnbt, self).__init__() channel = channel // 2 self.left = nn.Sequential( nn.Conv2d(channel, channel, (3, 1), (1, 1), (1, 0)), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (1, 3), (1, 1), (0, 1), bias=False), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (3, 1), (1, 1), (dilate, 0), dilation=(dilate, 1)), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (1, 3), (1, 1), (0, dilate), dilation=(1, dilate), bias=False), nn.BatchNorm2d(channel), nn.Dropout2d(drop_prob, inplace=True) ) self.right = nn.Sequential( nn.Conv2d(channel, channel, (1, 3), (1, 1), (0, 1)), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (3, 1), (1, 1), (1, 0), bias=False), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (1, 3), (1, 1), (0, dilate), dilation=(1, dilate)), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (3, 1), (1, 1), (dilate, 0), dilation=(dilate, 1), bias=False), nn.BatchNorm2d(channel), nn.Dropout2d(drop_prob, inplace=True) )
Example #16
Source File: basic.py From LEDNet with MIT License | 6 votes |
def __init__(self, channel, dilate=1, drop_prob=0.01): super(SSnbtv2, self).__init__() channel = channel // 2 self.left = nn.Sequential( nn.Conv2d(channel, channel, (3, 1), (1, 1), (1, 0)), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (1, 3), (1, 1), (0, 1), bias=False), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (3, 1), (1, 1), (dilate, 0), dilation=(dilate, 1)), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (1, 3), (1, 1), (0, dilate), dilation=(1, dilate), bias=False), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), nn.Dropout2d(drop_prob, inplace=True) ) self.right = nn.Sequential( nn.Conv2d(channel, channel, (1, 3), (1, 1), (0, 1)), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (3, 1), (1, 1), (1, 0), bias=False), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (1, 3), (1, 1), (0, dilate), dilation=(1, dilate)), nn.ReLU(inplace=True), nn.Conv2d(channel, channel, (3, 1), (1, 1), (dilate, 0), dilation=(dilate, 1), bias=False), nn.BatchNorm2d(channel), nn.ReLU(inplace=True), nn.Dropout2d(drop_prob, inplace=True) )
Example #17
Source File: ocnet.py From SegmenTron with Apache License 2.0 | 6 votes |
def __init__(self, in_channels, out_channels, key_channels, value_channels, scales=([1]), norm_layer=nn.BatchNorm2d, **kwargs): super(PyramidOCModule, self).__init__() self.stages = nn.ModuleList([ PyramidAttentionBlock(in_channels, out_channels, key_channels, value_channels, scale, norm_layer, **kwargs) for scale in scales]) self.up_dr = nn.Sequential( nn.Conv2d(in_channels, in_channels * len(scales), 1), norm_layer(in_channels * len(scales)), nn.ReLU(True) ) self.project = nn.Sequential( nn.Conv2d(in_channels * len(scales) * 2, out_channels, 1), norm_layer(out_channels), nn.ReLU(True), nn.Dropout2d(0.05) )
Example #18
Source File: ccnet.py From SegmenTron with Apache License 2.0 | 6 votes |
def __init__(self, in_channels, out_channels, norm_layer): super(_RCCAModule, self).__init__() self.recurrence = cfg.MODEL.CCNET.RECURRENCE inter_channels = in_channels // 4 self.conva = nn.Sequential( nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.cca = CrissCrossAttention(inter_channels) self.convb = nn.Sequential( nn.Conv2d(inter_channels, inter_channels, 3, padding=1, bias=False), norm_layer(inter_channels), nn.ReLU(True)) self.bottleneck = nn.Sequential( nn.Conv2d(in_channels + inter_channels, out_channels, 3, padding=1, bias=False), norm_layer(out_channels), nn.Dropout2d(0.1))
Example #19
Source File: fcn8s.py From cycada_release with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, input_dim=4096, output_dim=2, pretrained=False, weights_init=''): super().__init__() dim1 = 1024 if input_dim==4096 else 512 dim2 = int(dim1/2) self.D = nn.Sequential( nn.Conv2d(input_dim, dim1, 1), nn.Dropout2d(p=0.5), nn.ReLU(inplace=True), nn.Conv2d(dim1, dim2, 1), nn.Dropout2d(p=0.5), nn.ReLU(inplace=True), nn.Conv2d(dim2, output_dim, 1) ) if pretrained and weights_init is not None: self.load_weights(weights_init)
Example #20
Source File: enet.py From SegmenTron with Apache License 2.0 | 6 votes |
def __init__(self, in_channels, inter_channels, out_channels, norm_layer=nn.BatchNorm2d, **kwargs): super(UpsamplingBottleneck, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels) ) self.upsampling = nn.MaxUnpool2d(2) self.block = nn.Sequential( nn.Conv2d(in_channels, inter_channels, 1, bias=False), norm_layer(inter_channels), nn.PReLU(), nn.ConvTranspose2d(inter_channels, inter_channels, 2, 2, bias=False), norm_layer(inter_channels), nn.PReLU(), nn.Conv2d(inter_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.Dropout2d(0.1) ) self.act = nn.PReLU()
Example #21
Source File: edanet.py From SegmenTron with Apache License 2.0 | 6 votes |
def __init__(self, ninput, dilated, k=40, dropprob=0.02): super(EDABlock, self).__init__() # k: growthrate # dropprob:a dropout layer between the last ReLU and the concatenation of each module self.conv1x1 = nn.Conv2d(ninput, k, kernel_size=1) self.bn0 = nn.BatchNorm2d(k) self.conv3x1_1 = nn.Conv2d(k, k, kernel_size=(3, 1), padding=(1, 0)) self.conv1x3_1 = nn.Conv2d(k, k, kernel_size=(1, 3), padding=(0, 1)) self.bn1 = nn.BatchNorm2d(k) self.conv3x1_2 = nn.Conv2d(k, k, (3, 1), stride=1, padding=(dilated, 0), dilation=dilated) self.conv1x3_2 = nn.Conv2d(k, k, (1, 3), stride=1, padding=(0, dilated), dilation=dilated) self.bn2 = nn.BatchNorm2d(k) self.dropout = nn.Dropout2d(dropprob)
Example #22
Source File: blocks.py From pytorch-UNet with MIT License | 6 votes |
def __init__(self, in_channels, middle_channels, out_channels, deconv_channels, dropout=False): super(Decoder2D, self).__init__() layers = [ nn.Conv2d(in_channels, middle_channels, kernel_size=3, padding=1), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), nn.Conv2d(middle_channels, out_channels, kernel_size=3, padding=1), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.ConvTranspose2d(out_channels, deconv_channels, kernel_size=2, stride=2) ] if dropout: assert 0 <= dropout <= 1, 'dropout must be between 0 and 1' layers.append(nn.Dropout2d(p=dropout)) self.decoder = nn.Sequential(*layers)
Example #23
Source File: layers.py From MobileNet-V2 with Apache License 2.0 | 5 votes |
def conv2d_bn_relu6(in_channels, out_channels, kernel_size=3, stride=2, dropout_prob=0.0): # To preserve the equation of padding. (k=1 maps to pad 0, k=3 maps to pad 1, k=5 maps to pad 2, etc.) padding = (kernel_size + 1) // 2 - 1 return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False), nn.BatchNorm2d(out_channels), # For efficiency, Dropout is placed before Relu. nn.Dropout2d(dropout_prob, inplace=True), # Assumption: Relu6 is used everywhere. nn.ReLU6(inplace=True) )
Example #24
Source File: lenet_cwnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10)
Example #25
Source File: small_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=3, stride=2) self.conv2 = nn.Conv2d(10, 10, kernel_size=3, stride=2) #self.conv3 = nn.Conv2d(10, 10, kernel_size=3, stride=1) #self.drop = nn.Dropout2d() # self.fc1 = nn.Linear(784, 200) self.fc1 = nn.Linear(360, 200) self.fc2 = nn.Linear(200, 10)
Example #26
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10)
Example #27
Source File: ocnet.py From SegmenTron with Apache License 2.0 | 5 votes |
def __init__(self, in_channels, out_channels, key_channels, value_channels, atrous_rates=(12, 24, 36), norm_layer=nn.BatchNorm2d, **kwargs): super(ASPOCModule, self).__init__() self.context = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=1), norm_layer(out_channels), nn.ReLU(True), BaseOCModule(out_channels, out_channels, key_channels, value_channels, ([2]), norm_layer, False, **kwargs)) rate1, rate2, rate3 = tuple(atrous_rates) self.b1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=rate1, dilation=rate1, bias=False), norm_layer(out_channels), nn.ReLU(True)) self.b2 = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=rate2, dilation=rate2, bias=False), norm_layer(out_channels), nn.ReLU(True)) self.b3 = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=rate3, dilation=rate3, bias=False), norm_layer(out_channels), nn.ReLU(True)) self.b4 = nn.Sequential( nn.Conv2d(in_channels, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True)) self.project = nn.Sequential( nn.Conv2d(out_channels * 5, out_channels, 1, bias=False), norm_layer(out_channels), nn.ReLU(True), nn.Dropout2d(0.1) )
Example #28
Source File: small_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=3, stride=2) self.conv2 = nn.Conv2d(10, 10, kernel_size=3, stride=2) #self.conv3 = nn.Conv2d(10, 10, kernel_size=3, stride=1) #self.drop = nn.Dropout2d() # self.fc1 = nn.Linear(784, 200) self.fc1 = nn.Linear(360, 200) self.fc2 = nn.Linear(200, 10)
Example #29
Source File: lenet_cwnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10)
Example #30
Source File: ocnet.py From SegmenTron with Apache License 2.0 | 5 votes |
def __init__(self, in_channels, out_channels, key_channels, value_channels, scales=([1]), norm_layer=nn.BatchNorm2d, concat=True, **kwargs): super(BaseOCModule, self).__init__() self.stages = nn.ModuleList([ BaseAttentionBlock(in_channels, out_channels, key_channels, value_channels, scale, norm_layer, **kwargs) for scale in scales]) in_channels = in_channels * 2 if concat else in_channels self.project = nn.Sequential( nn.Conv2d(in_channels, out_channels, 1), norm_layer(out_channels), nn.ReLU(True), nn.Dropout2d(0.05) ) self.concat = concat