Python torch.nn.BatchNorm2d() Examples

The following are 30 code examples of torch.nn.BatchNorm2d(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torch.nn , or try the search function .
Example #1
Source File: model.py    From cat-bbs with MIT License 9 votes vote down vote up
def __init__(self):
        super(Model2, self).__init__()

        # fine tuning the ResNet helped significantly with the accuracy
        base_model = MyResNet(BasicBlock, [2, 2, 2, 2])
        base_model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
        # code needed to deactivate fine tuning of resnet
        #for param in base_model.parameters():
        #    param.requires_grad = False
        self.base_model = base_model
        self.drop0 = nn.Dropout2d(0.05)

        self.conv1 = nn.Conv2d(512, 256, 3, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(256)
        self.drop1 = nn.Dropout2d(0.05)

        self.conv2 = nn.Conv2d(256, 128, 3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(128)
        self.drop2 = nn.Dropout2d(0.05)

        self.conv3 = nn.Conv2d(128, 1+9, 3, padding=1, bias=False) 
Example #2
Source File: model.py    From cat-bbs with MIT License 8 votes vote down vote up
def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(MyResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # note the increasing dilation
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)

        # these layers will not be used
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
Example #3
Source File: resnet_v1.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 7 votes vote down vote up
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    # maxpool different from pytorch-resnet, to match tf-faster-rcnn
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    # use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=1)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
Example #4
Source File: decoder.py    From DDPAE-video-prediction with MIT License 7 votes vote down vote up
def __init__(self, input_size, n_channels, ngf, n_layers, activation='tanh'):
    super(ImageDecoder, self).__init__()

    ngf = ngf * (2 ** (n_layers - 2))
    layers = [nn.ConvTranspose2d(input_size, ngf, 4, 1, 0, bias=False),
              nn.BatchNorm2d(ngf),
              nn.ReLU(True)]

    for i in range(1, n_layers - 1):
      layers += [nn.ConvTranspose2d(ngf, ngf // 2, 4, 2, 1, bias=False),
                 nn.BatchNorm2d(ngf // 2),
                 nn.ReLU(True)]
      ngf = ngf // 2

    layers += [nn.ConvTranspose2d(ngf, n_channels, 4, 2, 1, bias=False)]
    if activation == 'tanh':
      layers += [nn.Tanh()]
    elif activation == 'sigmoid':
      layers += [nn.Sigmoid()]
    else:
      raise NotImplementedError

    self.main = nn.Sequential(*layers) 
Example #5
Source File: dpn.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
        super(Bottleneck, self).__init__()
        self.out_planes = out_planes
        self.dense_depth = dense_depth

        self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
        self.bn2 = nn.BatchNorm2d(in_planes)
        self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)

        self.shortcut = nn.Sequential()
        if first_layer:
            self.shortcut = nn.Sequential(
                nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_planes+dense_depth)
            ) 
Example #6
Source File: model.py    From cat-bbs with MIT License 6 votes vote down vote up
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, 1, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            # here with dilation
            layers.append(block(self.inplanes, planes, dilation=dilation))

        return nn.Sequential(*layers) 
Example #7
Source File: res_layer.py    From mmdetection with Apache License 2.0 6 votes vote down vote up
def init_weights(self, pretrained=None):
        """Initialize the weights in the module.

        Args:
            pretrained (str, optional): Path to pre-trained weights.
                Defaults to None.
        """
        if isinstance(pretrained, str):
            logger = get_root_logger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.BatchNorm2d):
                    constant_init(m, 1)
        else:
            raise TypeError('pretrained must be a str or None') 
Example #8
Source File: model.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self):
        super(CW2_Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.bnm1 = nn.BatchNorm2d(32, momentum=0.1)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.bnm2 = nn.BatchNorm2d(64, momentum=0.1)
        self.conv3 = nn.Conv2d(64, 128, 3)
        self.bnm3 = nn.BatchNorm2d(128, momentum=0.1)
        self.conv4 = nn.Conv2d(128, 128, 3)
        self.bnm4 = nn.BatchNorm2d(128, momentum=0.1)
        self.fc1 = nn.Linear(3200, 256)
        #self.dropout1 = nn.Dropout(p=0.35, inplace=False)
        self.bnm5 = nn.BatchNorm1d(256, momentum=0.1)
        self.fc2 = nn.Linear(256, 256)
        self.bnm6 = nn.BatchNorm1d(256, momentum=0.1)
        self.fc3 = nn.Linear(256, 10)
        #self.dropout2 = nn.Dropout(p=0.35, inplace=False)
        #self.dropout3 = nn.Dropout(p=0.35, inplace=False) 
Example #9
Source File: resnet_v1.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 6 votes vote down vote up
def _make_layer(self, block, planes, blocks, stride=1):
    downsample = None
    if stride != 1 or self.inplanes != planes * block.expansion:
      downsample = nn.Sequential(
        nn.Conv2d(self.inplanes, planes * block.expansion,
              kernel_size=1, stride=stride, bias=False),
        nn.BatchNorm2d(planes * block.expansion),
      )

    layers = []
    layers.append(block(self.inplanes, planes, stride, downsample))
    self.inplanes = planes * block.expansion
    for i in range(1, blocks):
      layers.append(block(self.inplanes, planes))

    return nn.Sequential(*layers) 
Example #10
Source File: resnext.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
        super(Block, self).__init__()
        group_width = cardinality * bottleneck_width
        self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(group_width)
        self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
        self.bn2 = nn.BatchNorm2d(group_width)
        self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*group_width)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*group_width:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*group_width)
            ) 
Example #11
Source File: dpn.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
        super(Bottleneck, self).__init__()
        self.out_planes = out_planes
        self.dense_depth = dense_depth

        self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
        self.bn2 = nn.BatchNorm2d(in_planes)
        self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)

        self.shortcut = nn.Sequential()
        if first_layer:
            self.shortcut = nn.Sequential(
                nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_planes+dense_depth)
            ) 
Example #12
Source File: senet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes)
            )

        # SE layers
        self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1)  # Use nn.Conv2d instead of nn.Linear
        self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1) 
Example #13
Source File: vgg.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size()) 
Example #14
Source File: googlenet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self):
        super(GoogLeNet, self).__init__()
        self.pre_layers = nn.Sequential(
            nn.Conv2d(3, 192, kernel_size=3, padding=1),
            nn.BatchNorm2d(192),
            nn.ReLU(True),
        )

        self.a3 = Inception(192,  64,  96, 128, 16, 32, 32)
        self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

        self.a4 = Inception(480, 192,  96, 208, 16,  48,  64)
        self.b4 = Inception(512, 160, 112, 224, 24,  64,  64)
        self.c4 = Inception(512, 128, 128, 256, 24,  64,  64)
        self.d4 = Inception(512, 112, 144, 288, 32,  64,  64)
        self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

        self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
        self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

        self.avgpool = nn.AvgPool2d(8, stride=1)
        self.linear = nn.Linear(1024, 10) 
Example #15
Source File: shufflenet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, out_planes, stride, groups):
        super(Bottleneck, self).__init__()
        self.stride = stride

        mid_planes = out_planes/4
        g = 1 if in_planes==24 else groups
        self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
        self.bn1 = nn.BatchNorm2d(mid_planes)
        self.shuffle1 = ShuffleBlock(groups=g)
        self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False)
        self.bn2 = nn.BatchNorm2d(mid_planes)
        self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes)

        self.shortcut = nn.Sequential()
        if stride == 2:
            self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1)) 
Example #16
Source File: model.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self):
        super(CW2_Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.bnm1 = nn.BatchNorm2d(32, momentum=0.1)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.bnm2 = nn.BatchNorm2d(64, momentum=0.1)
        self.conv3 = nn.Conv2d(64, 128, 3)
        self.bnm3 = nn.BatchNorm2d(128, momentum=0.1)
        self.conv4 = nn.Conv2d(128, 128, 3)
        self.bnm4 = nn.BatchNorm2d(128, momentum=0.1)
        self.fc1 = nn.Linear(3200, 256)
        #self.dropout1 = nn.Dropout(p=0.35, inplace=False)
        self.bnm5 = nn.BatchNorm1d(256, momentum=0.1)
        self.fc2 = nn.Linear(256, 256)
        self.bnm6 = nn.BatchNorm1d(256, momentum=0.1)
        self.fc3 = nn.Linear(256, 10)
        #self.dropout2 = nn.Dropout(p=0.35, inplace=False)
        #self.dropout3 = nn.Dropout(p=0.35, inplace=False) 
Example #17
Source File: resnext.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
        super(Block, self).__init__()
        group_width = cardinality * bottleneck_width
        self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(group_width)
        self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
        self.bn2 = nn.BatchNorm2d(group_width)
        self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*group_width)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*group_width:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*group_width)
            ) 
Example #18
Source File: shufflenet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, out_planes, stride, groups):
        super(Bottleneck, self).__init__()
        self.stride = stride

        mid_planes = out_planes/4
        g = 1 if in_planes==24 else groups
        self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
        self.bn1 = nn.BatchNorm2d(mid_planes)
        self.shuffle1 = ShuffleBlock(groups=g)
        self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False)
        self.bn2 = nn.BatchNorm2d(mid_planes)
        self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes)

        self.shortcut = nn.Sequential()
        if stride == 2:
            self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1)) 
Example #19
Source File: senet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes)
            )

        # SE layers
        self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1)  # Use nn.Conv2d instead of nn.Linear
        self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1) 
Example #20
Source File: vgg.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size()) 
Example #21
Source File: googlenet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self):
        super(GoogLeNet, self).__init__()
        self.pre_layers = nn.Sequential(
            nn.Conv2d(3, 192, kernel_size=3, padding=1),
            nn.BatchNorm2d(192),
            nn.ReLU(True),
        )

        self.a3 = Inception(192,  64,  96, 128, 16, 32, 32)
        self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

        self.a4 = Inception(480, 192,  96, 208, 16,  48,  64)
        self.b4 = Inception(512, 160, 112, 224, 24,  64,  64)
        self.c4 = Inception(512, 128, 128, 256, 24,  64,  64)
        self.d4 = Inception(512, 112, 144, 288, 32,  64,  64)
        self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

        self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
        self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

        self.avgpool = nn.AvgPool2d(8, stride=1)
        self.linear = nn.Linear(1024, 10) 
Example #22
Source File: shufflenet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, out_planes, stride, groups):
        super(Bottleneck, self).__init__()
        self.stride = stride

        mid_planes = out_planes/4
        g = 1 if in_planes==24 else groups
        self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False)
        self.bn1 = nn.BatchNorm2d(mid_planes)
        self.shuffle1 = ShuffleBlock(groups=g)
        self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False)
        self.bn2 = nn.BatchNorm2d(mid_planes)
        self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes)

        self.shortcut = nn.Sequential()
        if stride == 2:
            self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1)) 
Example #23
Source File: resnext.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1):
        super(Block, self).__init__()
        group_width = cardinality * bottleneck_width
        self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(group_width)
        self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False)
        self.bn2 = nn.BatchNorm2d(group_width)
        self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*group_width)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*group_width:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*group_width)
            ) 
Example #24
Source File: dpn.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
        super(Bottleneck, self).__init__()
        self.out_planes = out_planes
        self.dense_depth = dense_depth

        self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
        self.bn2 = nn.BatchNorm2d(in_planes)
        self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_planes+dense_depth)

        self.shortcut = nn.Sequential()
        if first_layer:
            self.shortcut = nn.Sequential(
                nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_planes+dense_depth)
            ) 
Example #25
Source File: senet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes)
            )

        # SE layers
        self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1)  # Use nn.Conv2d instead of nn.Linear
        self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1) 
Example #26
Source File: vgg.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size()) 
Example #27
Source File: googlenet.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self):
        super(GoogLeNet, self).__init__()
        self.pre_layers = nn.Sequential(
            nn.Conv2d(3, 192, kernel_size=3, padding=1),
            nn.BatchNorm2d(192),
            nn.ReLU(True),
        )

        self.a3 = Inception(192,  64,  96, 128, 16, 32, 32)
        self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

        self.a4 = Inception(480, 192,  96, 208, 16,  48,  64)
        self.b4 = Inception(512, 160, 112, 224, 24,  64,  64)
        self.c4 = Inception(512, 128, 128, 256, 24,  64,  64)
        self.d4 = Inception(512, 112, 144, 288, 32,  64,  64)
        self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

        self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
        self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

        self.avgpool = nn.AvgPool2d(8, stride=1)
        self.linear = nn.Linear(1024, 10) 
Example #28
Source File: model.py    From cat-bbs with MIT License 6 votes vote down vote up
def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
        self.bn1 = nn.BatchNorm2d(16)

        self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
        self.bn2 = nn.BatchNorm2d(32)

        self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
        self.bn3 = nn.BatchNorm2d(64)

        self.conv4 = nn.Conv2d(64, 128, 3, padding=1)
        self.bn4 = nn.BatchNorm2d(128)

        self.conv5 = nn.Conv2d(128, 128, 3, dilation=2, padding=2)
        self.bn5 = nn.BatchNorm2d(128)

        self.conv6 = nn.Conv2d(128, 128, 3, dilation=4, padding=4)
        self.bn6 = nn.BatchNorm2d(128)

        self.conv7 = nn.Conv2d(128, 1+9, 3, padding=1) 
Example #29
Source File: encoder.py    From DDPAE-video-prediction with MIT License 5 votes vote down vote up
def __init__(self, n_channels, output_size, ngf, n_layers):
    super(ImageEncoder, self).__init__()

    layers = [nn.Conv2d(n_channels, ngf, 4, 2, 1, bias=False),
              nn.LeakyReLU(0.2, inplace=True)]

    for i in range(1, n_layers - 1):
      layers += [nn.Conv2d(ngf, ngf * 2, 4, 2, 1, bias=False),
                 nn.BatchNorm2d(ngf * 2),
                 nn.LeakyReLU(0.2, inplace=True)]
      ngf *= 2

    layers += [nn.Conv2d(ngf, output_size, 4, 1, 0, bias=False)]

    self.main = nn.Sequential(*layers) 
Example #30
Source File: resnext.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def __init__(self, num_blocks, cardinality, bottleneck_width, num_classes=10):
        super(ResNeXt, self).__init__()
        self.cardinality = cardinality
        self.bottleneck_width = bottleneck_width
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(num_blocks[0], 1)
        self.layer2 = self._make_layer(num_blocks[1], 2)
        self.layer3 = self._make_layer(num_blocks[2], 2)
        # self.layer4 = self._make_layer(num_blocks[3], 2)
        self.linear = nn.Linear(cardinality*bottleneck_width*8, num_classes)