Python torch.nn.LogSoftmax() Examples
The following are 30
code examples of torch.nn.LogSoftmax().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn
, or try the search function
.
Example #1
Source File: neural_networks.py From pase with MIT License | 7 votes |
def act_fun(act_type): if act_type=="relu": return nn.ReLU() if act_type=="tanh": return nn.Tanh() if act_type=="sigmoid": return nn.Sigmoid() if act_type=="leaky_relu": return nn.LeakyReLU(0.2) if act_type=="elu": return nn.ELU() if act_type=="softmax": return nn.LogSoftmax(dim=1) if act_type=="linear": return nn.LeakyReLU(1) # initializzed like this, but not used in forward!
Example #2
Source File: neural_networks.py From pase with MIT License | 7 votes |
def act_fun(act_type): if act_type=="relu": return nn.ReLU() if act_type=="tanh": return nn.Tanh() if act_type=="sigmoid": return nn.Sigmoid() if act_type=="leaky_relu": return nn.LeakyReLU(0.2) if act_type=="elu": return nn.ELU() if act_type=="softmax": return nn.LogSoftmax(dim=1) if act_type=="linear": return nn.LeakyReLU(1) # initializzed like this, but not used in forward!
Example #3
Source File: neural_networks.py From pase with MIT License | 7 votes |
def act_fun(act_type): if act_type=="relu": return nn.ReLU() if act_type=="tanh": return nn.Tanh() if act_type=="sigmoid": return nn.Sigmoid() if act_type=="leaky_relu": return nn.LeakyReLU(0.2) if act_type=="elu": return nn.ELU() if act_type=="softmax": return nn.LogSoftmax(dim=1) if act_type=="linear": return nn.LeakyReLU(1) # initializzed like this, but not used in forward!
Example #4
Source File: pspnet.py From Single-Human-Parsing-LIP with MIT License | 7 votes |
def __init__(self, n_classes=20, sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet34', pretrained=True): super().__init__() self.feats = getattr(extractors, backend)(pretrained) self.psp = PSPModule(psp_size, 1024, sizes) self.drop_1 = nn.Dropout2d(p=0.3) self.up_1 = PSPUpsample(1024, 256) self.up_2 = PSPUpsample(256, 64) self.up_3 = PSPUpsample(64, 64) self.drop_2 = nn.Dropout2d(p=0.15) self.final = nn.Sequential( nn.Conv2d(64, n_classes, kernel_size=1), nn.LogSoftmax(dim=1) ) self.classifier = nn.Sequential( nn.Linear(deep_features_size, 256), nn.ReLU(), nn.Linear(256, n_classes) )
Example #5
Source File: mfcc_baseline.py From pase with MIT License | 6 votes |
def __init__(self, num_inputs=None, num_spks=None, hidden_size=2048, z_bnorm=False, name='MLP'): super().__init__(name=name, max_ckpts=1000) if num_spks is None: raise ValueError('Please specify a number of spks.') if z_bnorm: # apply z-norm to the input self.z_bnorm = nn.BatchNorm1d(frontend.emb_dim, affine=False) self.model = nn.Sequential( nn.Conv1d(num_inputs, hidden_size, 1), nn.LeakyReLU(), nn.BatchNorm1d(hidden_size), nn.Conv1d(hidden_size, num_spks, 1), nn.LogSoftmax(dim=1) )
Example #6
Source File: gen.py From visdial-challenge-starter-pytorch with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, config, vocabulary): super().__init__() self.config = config self.word_embed = nn.Embedding( len(vocabulary), config["word_embedding_size"], padding_idx=vocabulary.PAD_INDEX, ) self.answer_rnn = nn.LSTM( config["word_embedding_size"], config["lstm_hidden_size"], config["lstm_num_layers"], batch_first=True, dropout=config["dropout"], ) self.lstm_to_words = nn.Linear( self.config["lstm_hidden_size"], len(vocabulary) ) self.dropout = nn.Dropout(p=config["dropout"]) self.logsoftmax = nn.LogSoftmax(dim=-1)
Example #7
Source File: modules.py From segmentation_models.pytorch with MIT License | 6 votes |
def __init__(self, name, **params): super().__init__() if name is None or name == 'identity': self.activation = nn.Identity(**params) elif name == 'sigmoid': self.activation = nn.Sigmoid() elif name == 'softmax2d': self.activation = nn.Softmax(dim=1, **params) elif name == 'softmax': self.activation = nn.Softmax(**params) elif name == 'logsoftmax': self.activation = nn.LogSoftmax(**params) elif name == 'argmax': self.activation = ArgMax(**params) elif name == 'argmax2d': self.activation = ArgMax(dim=1, **params) elif callable(name): self.activation = name(**params) else: raise ValueError('Activation should be callable/sigmoid/softmax/logsoftmax/None; got {}'.format(name))
Example #8
Source File: MLPBin.py From Pytorch_Quantize_impls with MIT License | 6 votes |
def __init__(self, in_features, out_features, num_units=2048): super(BinMNIST, self).__init__() self.linear1 = LinearBin(in_features, num_units) self.norm1 =nn.BatchNorm1d(num_units, eps=1e-4, momentum=0.15) self.linear2 = LinearBin(num_units, num_units) self.norm2 = nn.BatchNorm1d(num_units, eps=1e-4, momentum=0.15) self.linear3 = LinearBin(num_units, num_units) self.norm3 =nn.BatchNorm1d(num_units, eps=1e-4, momentum=0.15) self.linear4 = LinearBin(num_units, out_features) self.norm4 =nn.BatchNorm1d(out_features, eps=1e-4, momentum=0.15) self.activation = nn.ReLU() self.act_end = nn.LogSoftmax()
Example #9
Source File: pspnet.py From DenseFusion with MIT License | 6 votes |
def __init__(self, n_classes=21, sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet18', pretrained=False): super(PSPNet, self).__init__() self.feats = getattr(extractors, backend)(pretrained) self.psp = PSPModule(psp_size, 1024, sizes) self.drop_1 = nn.Dropout2d(p=0.3) self.up_1 = PSPUpsample(1024, 256) self.up_2 = PSPUpsample(256, 64) self.up_3 = PSPUpsample(64, 64) self.drop_2 = nn.Dropout2d(p=0.15) self.final = nn.Sequential( nn.Conv2d(64, 32, kernel_size=1), nn.LogSoftmax() ) self.classifier = nn.Sequential( nn.Linear(deep_features_size, 256), nn.ReLU(), nn.Linear(256, n_classes) )
Example #10
Source File: mnist.py From dgl with Apache License 2.0 | 6 votes |
def __init__(self, n_kernels, in_feats, hiddens, out_feats): super(MoNet, self).__init__() self.pool = nn.MaxPool1d(2) self.layers = nn.ModuleList() self.readout = MaxPooling() # Input layer self.layers.append( GMMConv(in_feats, hiddens[0], 2, n_kernels)) # Hidden layer for i in range(1, len(hiddens)): self.layers.append(GMMConv(hiddens[i - 1], hiddens[i], 2, n_kernels)) self.cls = nn.Sequential( nn.Linear(hiddens[-1], out_feats), nn.LogSoftmax() )
Example #11
Source File: mnist.py From dgl with Apache License 2.0 | 6 votes |
def __init__(self, k, in_feats, hiddens, out_feats): super(ChebNet, self).__init__() self.pool = nn.MaxPool1d(2) self.layers = nn.ModuleList() self.readout = MaxPooling() # Input layer self.layers.append( ChebConv(in_feats, hiddens[0], k)) for i in range(1, len(hiddens)): self.layers.append( ChebConv(hiddens[i - 1], hiddens[i], k)) self.cls = nn.Sequential( nn.Linear(hiddens[-1], out_feats), nn.LogSoftmax() )
Example #12
Source File: demo_graph.py From tensorboardX with MIT License | 6 votes |
def __init__(self, input_size, hidden_size, output_size): super(RNN, self).__init__() self.hidden_size = hidden_size self.i2h = nn.Linear( n_categories + input_size + hidden_size, hidden_size) self.i2o = nn.Linear( n_categories + input_size + hidden_size, output_size) self.o2o = nn.Linear(hidden_size + output_size, output_size) self.dropout = nn.Dropout(0.1) self.softmax = nn.LogSoftmax(dim=1)
Example #13
Source File: adaptive.py From RAdam with Apache License 2.0 | 6 votes |
def log_prob(self, w_in): lsm = nn.LogSoftmax(dim=1).cuda() head_out = self.head(w_in) batch_size = head_out.size(0) prob = torch.zeros(batch_size, self.cutoff[-1]).cuda() lsm_head = lsm(head_out) prob.narrow(1, 0, self.output_size).add_(lsm_head.narrow(1, 0, self.output_size).data) for i in range(len(self.tail)): pos = self.cutoff[i] i_size = self.cutoff[i + 1] - pos buffer = lsm_head.narrow(1, self.cutoff[0] + i, 1) buffer = buffer.expand(batch_size, i_size) lsm_tail = lsm(self.tail[i](w_in)) prob.narrow(1, pos, i_size).copy_(buffer.data).add_(lsm_tail.data) return prob
Example #14
Source File: pspnet.py From 6-PACK with MIT License | 5 votes |
def __init__(self, n_classes=6, sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=1024, backend='resnet18', pretrained=False): super(PSPNet, self).__init__() self.feats = getattr(extractors, backend)(pretrained) self.psp = PSPModule(psp_size, 1024, sizes) self.drop_1 = nn.Dropout2d(p=0.3) self.drop_2 = nn.Dropout2d(p=0.15) self.up_1 = PSPUpsample(1024, 256) self.up_2 = PSPUpsample(256, 64) self.up_3 = PSPUpsample(64, 64) self.up_1_seg = PSPUpsample(1024, 256) self.up_2_seg = PSPUpsample(256, 64) self.up_3_seg = PSPUpsample(64, 64) self.final = nn.Sequential( nn.Conv2d(64, 32, kernel_size=1), nn.LogSoftmax() ) self.final_seg = nn.Sequential( nn.Conv2d(64, 2, kernel_size=1) ) self.classifier = nn.Sequential( nn.Linear(deep_features_size, 256), nn.ReLU(), nn.Linear(256, n_classes) )
Example #15
Source File: train.py From pytorch-deeplab-resnet with MIT License | 5 votes |
def loss_calc(out, label,gpu0): """ This function returns cross entropy loss for semantic segmentation """ # out shape batch_size x channels x h x w -> batch_size x channels x h x w # label shape h x w x 1 x batch_size -> batch_size x 1 x h x w label = label[:,:,0,:].transpose(2,0,1) label = torch.from_numpy(label).long() label = Variable(label).cuda(gpu0) m = nn.LogSoftmax() criterion = nn.NLLLoss2d() out = m(out) return criterion(out,label)
Example #16
Source File: model.py From deepWordBug with Apache License 2.0 | 5 votes |
def __init__(self, classes=4, bidirection = False, layernum=1, length=20000,embedding_size =100, hiddensize = 100): super(smallRNN, self).__init__() self.embd = nn.Embedding(length, embedding_size) # self.lstm = nn.LSTMCell(hiddensize, hiddensize) self.lstm = nn.LSTM(embedding_size, hiddensize, layernum, bidirectional = bidirection) self.hiddensize = hiddensize numdirections = 1 + bidirection self.hsize = numdirections * layernum self.linear = nn.Linear(hiddensize * numdirections, classes) self.log_softmax = nn.LogSoftmax()
Example #17
Source File: model.py From deepWordBug with Apache License 2.0 | 5 votes |
def __init__(self, classes=4, bidirection = False, layernum=1, char_size = 69, hiddensize = 100): super(smallcharRNN, self).__init__() # self.embd = nn.Embedding(length, embedding_size) # self.lstm = nn.LSTMCell(hiddensize, hiddensize) self.lstm = nn.LSTM(char_size, hiddensize, layernum, bidirectional = bidirection) self.hiddensize = hiddensize numdirections = 1 + bidirection self.hsize = numdirections * layernum self.linear = nn.Linear(hiddensize * numdirections, classes) self.log_softmax = nn.LogSoftmax()
Example #18
Source File: adaptive_softmax.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def __init__(self, vocab_size, input_dim, cutoff, dropout): super().__init__() if vocab_size > cutoff[-1]: cutoff = cutoff + [vocab_size] else: assert vocab_size == cutoff[ -1], 'cannot specify cutoff smaller than vocab size' output_dim = cutoff[0] + len(cutoff) - 1 self.vocab_size = vocab_size self.cutoff = cutoff self.dropout = dropout self.lsm = nn.LogSoftmax(dim=1) self.head = nn.Linear(input_dim, output_dim, bias=False) self.tail = nn.ModuleList() for i in range(len(cutoff) - 1): self.tail.append( nn.Sequential( nn.Linear(input_dim, input_dim // 4 ** i, bias=False), nn.Dropout(dropout), nn.Linear(input_dim // 4 ** i, cutoff[i + 1] - cutoff[i], bias=False) ) ) def init_weights(m): if hasattr(m, 'weight'): nn.init.xavier_uniform_(m.weight) self.apply(init_weights)
Example #19
Source File: model.py From deepWordBug with Apache License 2.0 | 5 votes |
def __init__(self, classes=4, bidirection = False, layernum=1, char_size = 69, hiddensize = 100): super(smallcharRNN, self).__init__() # self.embd = nn.Embedding(length, embedding_size) # self.lstm = nn.LSTMCell(hiddensize, hiddensize) self.lstm = nn.LSTM(char_size, hiddensize, layernum, bidirectional = bidirection) self.hiddensize = hiddensize numdirections = 1 + bidirection self.hsize = numdirections * layernum self.linear = nn.Linear(hiddensize * numdirections, classes) self.log_softmax = nn.LogSoftmax()
Example #20
Source File: cross_entropy_loss.py From ABD-Net with MIT License | 5 votes |
def __init__(self, num_classes, epsilon=0.1, use_gpu=True, label_smooth=True): super(CrossEntropyLoss, self).__init__() self.num_classes = num_classes self.epsilon = epsilon if label_smooth else 0 self.use_gpu = use_gpu self.logsoftmax = nn.LogSoftmax(dim=1)
Example #21
Source File: metrics.py From unsupervised-data-augmentation with Apache License 2.0 | 5 votes |
def cross_entropy_smooth(input, target, size_average=True, label_smoothing=0.1): y = torch.eye(10).cuda() lb_oh = y[target] target = lb_oh * (1 - label_smoothing) + 0.5 * label_smoothing logsoftmax = nn.LogSoftmax() if size_average: return torch.mean(torch.sum(-target * logsoftmax(input), dim=1)) else: return torch.sum(torch.sum(-target * logsoftmax(input), dim=1))
Example #22
Source File: gazenet.py From Where-are-they-looking-PyTorch with MIT License | 5 votes |
def __init__(self, opt): super(Net, self).__init__() self.salpath = AlexSal(opt) self.gazepath = AlexGaze(opt) self.opt = opt self.smax = nn.LogSoftmax(dim=1) self.nolog_smax = nn.Softmax(dim=1) self.fc_0_0 = nn.Linear(169, 25) self.fc_0_m1 = nn.Linear(169, 25) self.fc_0_1 = nn.Linear(169, 25) self.fc_m1_0 = nn.Linear(169, 25) self.fc_1_0 = nn.Linear(169, 25)
Example #23
Source File: Translator.py From fastNLP with Apache License 2.0 | 5 votes |
def __init__(self, opt): self.opt = opt self.device = torch.device('cuda' if opt.cuda else 'cpu') checkpoint = torch.load(opt.model) model_opt = checkpoint['settings'] self.model_opt = model_opt model = Transformer( model_opt.src_vocab_size, model_opt.tgt_vocab_size, model_opt.max_token_seq_len, tgt_emb_prj_weight_sharing=model_opt.proj_share_weight, emb_src_tgt_weight_sharing=model_opt.embs_share_weight, d_k=model_opt.d_k, d_v=model_opt.d_v, d_model=model_opt.d_model, d_word_vec=model_opt.d_word_vec, d_inner=model_opt.d_inner_hid, n_layers=model_opt.n_layers, n_head=model_opt.n_head, dropout=model_opt.dropout) model.load_state_dict(checkpoint['model']) print('[Info] Trained model state loaded.') model.word_prob_prj = nn.LogSoftmax(dim=1) model = model.to(self.device) self.model = model self.model.eval()
Example #24
Source File: HAN.py From fastNLP with Apache License 2.0 | 5 votes |
def __init__(self, input_size, output_size, word_hidden_size, word_num_layers, word_context_size, sent_hidden_size, sent_num_layers, sent_context_size): super(HAN, self).__init__() self.word_layer = AttentionNet(input_size, word_hidden_size, word_num_layers, word_context_size) self.sent_layer = AttentionNet(2 * word_hidden_size, sent_hidden_size, sent_num_layers, sent_context_size) self.output_layer = nn.Linear(2 * sent_hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1)
Example #25
Source File: dec_attn.py From e2e-nlg-challenge-2017 with Apache License 2.0 | 5 votes |
def __init__(self, rnn_config, output_size, prev_y_dim, enc_dim, enc_num_directions): super(DecoderRNNAttnBahd, self).__init__() self.rnn = get_GRU_unit(rnn_config) # Setting attention dec_dim = rnn_config["hidden_size"] self.attn_module = AttnBahd(enc_dim, dec_dim, enc_num_directions) self.W_combine = nn.Linear(prev_y_dim + enc_dim * enc_num_directions, dec_dim) self.W_out = nn.Linear(dec_dim, output_size) self.log_softmax = nn.LogSoftmax() # works with NLL loss
Example #26
Source File: losses.py From conditional-motion-propagation with MIT License | 5 votes |
def MultiChannelSoftBinaryCrossEntropy(input, target, reduction='mean'): ''' input: N x 38 x H x W --> 19N x 2 x H x W target: N x 19 x H x W --> 19N x 1 x H x W ''' input = input.view(-1, 2, input.size(2), input.size(3)) target = target.view(-1, 1, input.size(2), input.size(3)) logsoftmax = nn.LogSoftmax(dim=1) if reduction == 'mean': return torch.mean(torch.sum(-target * logsoftmax(input), dim=1)) else: return torch.sum(torch.sum(-target * logsoftmax(input), dim=1))
Example #27
Source File: models.py From AMNRE with MIT License | 5 votes |
def __init__(self): super(MonoRE,self).__init__() self.relation_emb=nn.Embedding(dimR,Encodered_dim) self.dropout=nn.Dropout(p=Att_dropout) #self.softmax=nn.Softmax() #self.logsoftmax=nn.LogSoftmax() self.M=nn.Linear(Encodered_dim,dimR)
Example #28
Source File: models.py From AMNRE with MIT License | 5 votes |
def __init__(self): super(MonoRE,self).__init__() self.relation_emb=nn.Embedding(dimR,Encodered_dim) self.dropout=nn.Dropout(p=Att_dropout) #self.softmax=nn.Softmax() #self.logsoftmax=nn.LogSoftmax() self.M=nn.Linear(Encodered_dim,dimR)
Example #29
Source File: models.py From AMNRE with MIT License | 5 votes |
def __init__(self): super(MultiRE,self).__init__() self.relation_emb=nn.Embedding(dimR,Encodered_dim) self.dropout=nn.Dropout(p=Att_dropout) #self.softmax=nn.Softmax() #self.logsoftmax=nn.LogSoftmax() self.M=nn.Linear(Encodered_dim,dimR)
Example #30
Source File: load_and_test_model.py From deep-learning-flower-identifier with MIT License | 5 votes |
def load_model(checkpoint_path): """ Sample code for loading a saved model :param checkpoint_path: :return: """ chpt = torch.load(checkpoint_path) pretrained_model = getattr(models, chpt['arch']) if callable(pretrained_model): model = pretrained_model(pretrained=True) for param in model.parameters(): param.requires_grad = False else: print("Sorry base architecture not recognized") model.class_to_idx = chpt['class_to_idx'] # Create the classifier classifier = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(25088, 4096)), ('relu', nn.ReLU()), ('fc2', nn.Linear(4096, 102)), ('output', nn.LogSoftmax(dim=1)) ])) # Put the classifier on the pretrained network model.classifier = classifier model.load_state_dict(chpt['state_dict']) return model