Python torch.nn.Sigmoid() Examples
The following are 30
code examples of torch.nn.Sigmoid().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn
, or try the search function
.
Example #1
Source File: model_architecture.py From models with MIT License | 8 votes |
def get_model(load_weights = True): deepsea_cpu = nn.Sequential( # Sequential, nn.Conv2d(4,320,(1, 8),(1, 1)), nn.Threshold(0, 1e-06), nn.MaxPool2d((1, 4),(1, 4)), nn.Dropout(0.2), nn.Conv2d(320,480,(1, 8),(1, 1)), nn.Threshold(0, 1e-06), nn.MaxPool2d((1, 4),(1, 4)), nn.Dropout(0.2), nn.Conv2d(480,960,(1, 8),(1, 1)), nn.Threshold(0, 1e-06), nn.Dropout(0.5), Lambda(lambda x: x.view(x.size(0),-1)), # Reshape, nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(50880,925)), # Linear, nn.Threshold(0, 1e-06), nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(925,919)), # Linear, nn.Sigmoid(), ) if load_weights: deepsea_cpu.load_state_dict(torch.load('model_files/deepsea_cpu.pth')) return nn.Sequential(ReCodeAlphabet(), deepsea_cpu)
Example #2
Source File: dcgan_discriminator.py From Pytorch-Project-Template with MIT License | 7 votes |
def __init__(self, config): super().__init__() self.config = config self.relu = nn.LeakyReLU(self.config.relu_slope, inplace=True) self.conv1 = nn.Conv2d(in_channels=self.config.input_channels, out_channels=self.config.num_filt_d, kernel_size=4, stride=2, padding=1, bias=False) self.conv2 = nn.Conv2d(in_channels=self.config.num_filt_d, out_channels=self.config.num_filt_d * 2, kernel_size=4, stride=2, padding=1, bias=False) self.batch_norm1 = nn.BatchNorm2d(self.config.num_filt_d*2) self.conv3 = nn.Conv2d(in_channels=self.config.num_filt_d*2, out_channels=self.config.num_filt_d * 4, kernel_size=4, stride=2, padding=1, bias=False) self.batch_norm2 = nn.BatchNorm2d(self.config.num_filt_d*4) self.conv4 = nn.Conv2d(in_channels=self.config.num_filt_d*4, out_channels=self.config.num_filt_d*8, kernel_size=4, stride=2, padding=1, bias=False) self.batch_norm3 = nn.BatchNorm2d(self.config.num_filt_d*8) self.conv5 = nn.Conv2d(in_channels=self.config.num_filt_d*8, out_channels=1, kernel_size=4, stride=1, padding=0, bias=False) self.out = nn.Sigmoid() self.apply(weights_init)
Example #3
Source File: decoder.py From DDPAE-video-prediction with MIT License | 7 votes |
def __init__(self, input_size, n_channels, ngf, n_layers, activation='tanh'): super(ImageDecoder, self).__init__() ngf = ngf * (2 ** (n_layers - 2)) layers = [nn.ConvTranspose2d(input_size, ngf, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True)] for i in range(1, n_layers - 1): layers += [nn.ConvTranspose2d(ngf, ngf // 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf // 2), nn.ReLU(True)] ngf = ngf // 2 layers += [nn.ConvTranspose2d(ngf, n_channels, 4, 2, 1, bias=False)] if activation == 'tanh': layers += [nn.Tanh()] elif activation == 'sigmoid': layers += [nn.Sigmoid()] else: raise NotImplementedError self.main = nn.Sequential(*layers)
Example #4
Source File: 20_lenet.py From deep-learning-note with MIT License | 6 votes |
def __init__(self): super(LeNet, self).__init__() # 卷积层 self.conv = nn.Sequential( nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size nn.Sigmoid(), nn.MaxPool2d(2, 2), # kernel_size, stride nn.Conv2d(6, 16, 5), nn.Sigmoid(), nn.MaxPool2d(2, 2) ) # 全连接层 self.fc = nn.Sequential( nn.Linear(16 * 4 * 4, 120), nn.Sigmoid(), nn.Linear(120, 84), nn.Sigmoid(), nn.Linear(84, 10) )
Example #5
Source File: model_architecture.py From models with MIT License | 6 votes |
def get_seqpred_model(load_weights = True): deepsea_cpu = nn.Sequential( # Sequential, nn.Conv2d(4,320,(1, 8),(1, 1)), nn.Threshold(0, 1e-06), nn.MaxPool2d((1, 4),(1, 4)), nn.Dropout(0.2), nn.Conv2d(320,480,(1, 8),(1, 1)), nn.Threshold(0, 1e-06), nn.MaxPool2d((1, 4),(1, 4)), nn.Dropout(0.2), nn.Conv2d(480,960,(1, 8),(1, 1)), nn.Threshold(0, 1e-06), nn.Dropout(0.5), Lambda(lambda x: x.view(x.size(0),-1)), # Reshape, nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(50880,925)), # Linear, nn.Threshold(0, 1e-06), nn.Sequential(Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ),nn.Linear(925,919)), # Linear, nn.Sigmoid(), ) if load_weights: deepsea_cpu.load_state_dict(torch.load('model_files/deepsea_cpu.pth')) return nn.Sequential(ReCodeAlphabet(), ConcatenateRC(), deepsea_cpu, AverageRC())
Example #6
Source File: multitask_question_answering_network.py From decaNLP with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1): super().__init__() self.d_hid = d_hid self.d_in = d_in self.num_layers = num_layers self.dropout = nn.Dropout(dropout) self.input_feed = True if self.input_feed: d_in += 1 * d_hid self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout) self.context_attn = LSTMDecoderAttention(d_hid, dot=True) self.question_attn = LSTMDecoderAttention(d_hid, dot=True) self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid()) self.context_question_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
Example #7
Source File: trade_utils.py From ConvLab with MIT License | 6 votes |
def __init__(self, lang, shared_emb, vocab_size, hidden_size, dropout, slots, nb_gate): super(Generator, self).__init__() self.vocab_size = vocab_size self.lang = lang self.embedding = shared_emb self.dropout_layer = nn.Dropout(dropout) self.gru = nn.GRU(hidden_size, hidden_size, dropout=dropout) self.nb_gate = nb_gate self.hidden_size = hidden_size self.W_ratio = nn.Linear(3 * hidden_size, 1) self.softmax = nn.Softmax(dim=1) self.sigmoid = nn.Sigmoid() self.slots = slots self.W_gate = nn.Linear(hidden_size, nb_gate) # Create independent slot embeddings self.slot_w2i = {} for slot in self.slots: if slot.split("-")[0] not in self.slot_w2i.keys(): self.slot_w2i[slot.split("-")[0]] = len(self.slot_w2i) if slot.split("-")[1] not in self.slot_w2i.keys(): self.slot_w2i[slot.split("-")[1]] = len(self.slot_w2i) self.Slot_emb = nn.Embedding(len(self.slot_w2i), hidden_size) self.Slot_emb.weight.data.normal_(0, 0.1)
Example #8
Source File: operators.py From Fast_Seg with Apache License 2.0 | 6 votes |
def __init__(self, in_planes, out_planes, reduction=1, norm_layer=nn.BatchNorm2d): super(FeatureFusion, self).__init__() self.conv_1x1 = ConvBnRelu(in_planes, out_planes, 1, 1, 0, has_bn=True, norm_layer=norm_layer, has_relu=True, has_bias=False) self.channel_attention = nn.Sequential( nn.AdaptiveAvgPool2d(1), ConvBnRelu(out_planes, out_planes // reduction, 1, 1, 0, has_bn=False, norm_layer=norm_layer, has_relu=True, has_bias=False), ConvBnRelu(out_planes // reduction, out_planes, 1, 1, 0, has_bn=False, norm_layer=norm_layer, has_relu=False, has_bias=False), nn.Sigmoid() )
Example #9
Source File: transformer_blocks.py From Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch with MIT License | 6 votes |
def __init__(self, input_size, inner_linear, inner_groups=1, layer_norm=True, weight_norm=False, dropout=0, batch_first=True): super(AverageNetwork, self).__init__() wn_func = wn if weight_norm else lambda x: x self.input_size = input_size self.time_step = 0 self.batch_dim, self.time_dim = (0, 1) if batch_first else (1, 0) self.gates = nn.Sequential( wn_func(nn.Linear(2 * input_size, 2 * input_size)), nn.Sigmoid() ) if layer_norm: self.lnorm = nn.LayerNorm(input_size) self.fc = nn.Sequential(wn_func(Linear(input_size, inner_linear, groups=inner_groups)), nn.ReLU(inplace=True), nn.Dropout(dropout), wn_func(Linear(inner_linear, input_size, groups=inner_groups)))
Example #10
Source File: squeeze_excitation.py From Parsing-R-CNN with MIT License | 6 votes |
def __init__(self, inplanes, kernel=3, reduction=16, with_padding=False): super(GDWSe2d, self).__init__() if with_padding: padding = kernel // 2 else: padding = 0 self.globle_dw = nn.Conv2d(inplanes, inplanes, kernel_size=kernel, padding=padding, stride=1, groups=inplanes, bias=False) self.bn = nn.BatchNorm2d(inplanes) self.relu = nn.ReLU(inplace=True) self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(inplanes, inplanes // reduction), nn.ReLU(inplace=True), nn.Linear(inplanes // reduction, inplanes), nn.Sigmoid() ) self._init_weights()
Example #11
Source File: mrcnn.py From medicaldetectiontoolkit with Apache License 2.0 | 6 votes |
def __init__(self, cf, conv): super(Mask, self).__init__() self.pool_size = cf.mask_pool_size self.pyramid_levels = cf.pyramid_levels self.dim = conv.dim self.conv1 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv2 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv3 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv4 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) if conv.dim == 2: self.deconv = nn.ConvTranspose2d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2) else: self.deconv = nn.ConvTranspose3d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2) self.relu = nn.ReLU(inplace=True) if cf.relu == 'relu' else nn.LeakyReLU(inplace=True) self.conv5 = conv(cf.end_filts, cf.head_classes, ks=1, stride=1, relu=None) self.sigmoid = nn.Sigmoid()
Example #12
Source File: ufrcnn.py From medicaldetectiontoolkit with Apache License 2.0 | 6 votes |
def __init__(self, cf, conv): super(Mask, self).__init__() self.pool_size = cf.mask_pool_size self.pyramid_levels = cf.pyramid_levels self.dim = conv.dim self.conv1 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv2 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv3 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv4 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) if conv.dim == 2: self.deconv = nn.ConvTranspose2d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2) else: self.deconv = nn.ConvTranspose3d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2) self.relu = nn.ReLU(inplace=True) if cf.relu == 'relu' else nn.LeakyReLU(inplace=True) self.conv5 = conv(cf.end_filts, cf.head_classes, ks=1, stride=1, relu=None) self.sigmoid = nn.Sigmoid()
Example #13
Source File: self_attentive_pointer_generator.py From decaNLP with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1): super().__init__() self.d_hid = d_hid self.d_in = d_in self.num_layers = num_layers self.dropout = nn.Dropout(dropout) self.input_feed = True if self.input_feed: d_in += 1 * d_hid self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout) self.context_attn = LSTMDecoderAttention(d_hid, dot=True) self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
Example #14
Source File: senet.py From pneumothorax-segmentation with MIT License | 5 votes |
def __init__(self, channels, reduction, concat=False): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) self.sigmoid = nn.Sigmoid()
Example #15
Source File: mixture_batchnorm.py From Parsing-R-CNN with MIT License | 5 votes |
def __init__(self, num_channels, k, norm=None, groups=1, use_hsig=True): super(AttentionWeights, self).__init__() # num_channels *= 2 self.k = k self.avgpool = nn.AdaptiveAvgPool2d(1) self.attention = nn.Sequential( nn.Conv2d(num_channels, k, 1, bias=False), make_norm(k, norm, groups), H_Sigmoid() if use_hsig else nn.Sigmoid() )
Example #16
Source File: pointer_generator.py From decaNLP with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1): super().__init__() self.d_hid = d_hid self.d_in = d_in self.num_layers = num_layers self.dropout = nn.Dropout(dropout) self.input_feed = True if self.input_feed: d_in += 1 * d_hid self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout) self.context_attn = LSTMDecoderAttention(d_hid, dot=True) self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
Example #17
Source File: coattentive_pointer_generator.py From decaNLP with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, d_in, d_hid, dropout=0.0, num_layers=1): super().__init__() self.d_hid = d_hid self.d_in = d_in self.num_layers = num_layers self.dropout = nn.Dropout(dropout) self.input_feed = True if self.input_feed: d_in += 1 * d_hid self.rnn = LSTMDecoder(self.num_layers, d_in, d_hid, dropout) self.context_attn = LSTMDecoderAttention(d_hid, dot=True) self.vocab_pointer_switch = nn.Sequential(Feedforward(2 * self.d_hid + d_in, 1), nn.Sigmoid())
Example #18
Source File: deform_pool_module.py From Parsing-R-CNN with MIT License | 5 votes |
def __init__(self, spatial_scale, out_size, out_channels, no_trans, group_size=1, part_size=None, sample_per_part=4, trans_std=.0, deform_fc_channels=1024): super(ModulatedDeformRoIPoolingPack, self).__init__( spatial_scale, out_size, out_channels, no_trans, group_size, part_size, sample_per_part, trans_std) self.deform_fc_channels = deform_fc_channels if not no_trans: self.offset_fc = nn.Sequential( nn.Linear(self.out_size * self.out_size * self.out_channels, self.deform_fc_channels), nn.ReLU(inplace=True), nn.Linear(self.deform_fc_channels, self.deform_fc_channels), nn.ReLU(inplace=True), nn.Linear(self.deform_fc_channels, self.out_size * self.out_size * 2)) self.offset_fc[-1].weight.data.zero_() self.offset_fc[-1].bias.data.zero_() self.mask_fc = nn.Sequential( nn.Linear(self.out_size * self.out_size * self.out_channels, self.deform_fc_channels), nn.ReLU(inplace=True), nn.Linear(self.deform_fc_channels, self.out_size * self.out_size * 1), nn.Sigmoid()) self.mask_fc[2].weight.data.zero_() self.mask_fc[2].bias.data.zero_()
Example #19
Source File: cheby_net.py From LanczosNetwork with MIT License | 5 votes |
def __init__(self, config): super(ChebyNet, self).__init__() self.config = config self.input_dim = config.model.input_dim self.hidden_dim = config.model.hidden_dim self.output_dim = config.model.output_dim self.num_layer = config.model.num_layer self.polynomial_order = config.model.polynomial_order self.num_atom = config.dataset.num_atom self.num_edgetype = config.dataset.num_bond_type self.dropout = config.model.dropout if hasattr(config.model, 'dropout') else 0.0 dim_list = [self.input_dim] + self.hidden_dim + [self.output_dim] self.filter = nn.ModuleList([ nn.Linear(dim_list[tt] * (self.polynomial_order + self.num_edgetype + 1), dim_list[tt + 1]) for tt in range(self.num_layer) ] + [nn.Linear(dim_list[-2], dim_list[-1])]) self.embedding = nn.Embedding(self.num_atom, self.input_dim) # attention self.att_func = nn.Sequential(*[nn.Linear(dim_list[-2], 1), nn.Sigmoid()]) if config.model.loss == 'CrossEntropy': self.loss_func = torch.nn.CrossEntropyLoss() elif config.model.loss == 'MSE': self.loss_func = torch.nn.MSELoss() elif config.model.loss == 'L1': self.loss_func = torch.nn.L1Loss() else: raise ValueError("Non-supported loss function!") self._init_param()
Example #20
Source File: conv.py From Character-Level-Language-Modeling-with-Deeper-Self-Attention-pytorch with MIT License | 5 votes |
def __init__(self, in_channels, out_channels, kernel_size, dilation=1, groups=1, bias=True, causal=True): super(GatedConv1d, self).__init__(in_channels, 2 * out_channels, kernel_size, dilation, groups, bias, causal) self.sigmoid = nn.Sigmoid()
Example #21
Source File: utils.py From ScenarioMeta with MIT License | 5 votes |
def activation_method(name): """ :param name: (str) :return: torch.nn.Module """ name = name.lower() if name == "sigmoid": return nn.Sigmoid() elif name == "tanh": return nn.Tanh() elif name == "relu": return nn.ReLU() else: return nn.Sequential()
Example #22
Source File: 12_activation_functions.py From pytorchTutorial with MIT License | 5 votes |
def __init__(self, input_size, hidden_size): super(NeuralNet, self).__init__() self.linear1 = nn.Linear(input_size, hidden_size) self.relu = nn.ReLU() self.linear2 = nn.Linear(hidden_size, 1) self.sigmoid = nn.Sigmoid()
Example #23
Source File: networks.py From ganomaly with MIT License | 5 votes |
def __init__(self, opt): super(NetD, self).__init__() model = Encoder(opt.isize, 1, opt.nc, opt.ngf, opt.ngpu, opt.extralayers) layers = list(model.main.children()) self.features = nn.Sequential(*layers[:-1]) self.classifier = nn.Sequential(layers[-1]) self.classifier.add_module('Sigmoid', nn.Sigmoid())
Example #24
Source File: v1_neuro.py From Attentive-Filtering-Network with MIT License | 5 votes |
def __init__(self, input_dim): super(FeedForward, self).__init__() self.classifier = nn.Sequential( nn.Linear(input_dim, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Linear(256, 256), nn.BatchNorm1d(256), nn.AlphaDropout(p=0.5), nn.ReLU(), nn.Linear(256, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Linear(256, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Linear(256, 256), nn.BatchNorm1d(256), nn.ReLU(), nn.Linear(256, 1), nn.Sigmoid() )
Example #25
Source File: SemBranch.py From Semantic-Aware-Scene-Recognition with MIT License | 5 votes |
def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False) self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False) self.relu1 = nn.ReLU() self.sigmoid = nn.Sigmoid()
Example #26
Source File: SASceneNet.py From Semantic-Aware-Scene-Recognition with MIT License | 5 votes |
def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False) self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False) self.relu1 = nn.ReLU() self.sigmoid = nn.Sigmoid()
Example #27
Source File: senet.py From Visualizing-CNNs-for-monocular-depth-estimation with MIT License | 5 votes |
def __init__(self, channels, reduction): super(SEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, padding=0) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, padding=0) self.sigmoid = nn.Sigmoid()
Example #28
Source File: common_utils.py From interpret-text with MIT License | 5 votes |
def _common_pytorch_generator(numCols, numClasses=None): class Net(nn.Module): def __init__(self): super(Net, self).__init__() # Apply layer normalization for stability and perf on wide variety of datasets # https://arxiv.org/pdf/1607.06450.pdf self.norm = nn.LayerNorm(numCols) self.fc1 = nn.Linear(numCols, 100) self.fc2 = nn.Dropout(p=0.2) if numClasses is None: self.fc3 = nn.Linear(100, 3) self.output = nn.Linear(3, 1) elif numClasses == 2: self.fc3 = nn.Linear(100, 2) self.output = nn.Sigmoid() else: self.fc3 = nn.Linear(100, numClasses) self.output = nn.Softmax() def forward(self, X): X = self.norm(X) X = F.relu(self.fc1(X)) X = self.fc2(X) X = self.fc3(X) X = self.output(X) return X return Net()
Example #29
Source File: gcnfp.py From LanczosNetwork with MIT License | 5 votes |
def __init__(self, config): super(GCNFP, self).__init__() self.config = config self.input_dim = config.model.input_dim self.hidden_dim = config.model.hidden_dim self.output_dim = config.model.output_dim self.num_layer = config.model.num_layer self.num_atom = config.dataset.num_atom self.num_edgetype = config.dataset.num_bond_type self.dropout = config.model.dropout if hasattr(config.model, 'dropout') else 0.0 dim_list = [self.input_dim] + self.hidden_dim + [self.output_dim] self.filter = nn.ModuleList([ nn.Linear(dim_list[tt] * (self.num_edgetype + 1), dim_list[tt + 1]) for tt in range(self.num_layer) ] + [nn.Linear(dim_list[-2], dim_list[-1])]) self.embedding = nn.Embedding(self.num_atom, self.input_dim) # attention self.att_func = nn.Sequential(*[nn.Linear(dim_list[-2], 1), nn.Sigmoid()]) if config.model.loss == 'CrossEntropy': self.loss_func = torch.nn.CrossEntropyLoss() elif config.model.loss == 'MSE': self.loss_func = torch.nn.MSELoss() elif config.model.loss == 'L1': self.loss_func = torch.nn.L1Loss() else: raise ValueError("Non-supported loss function!") self._init_param()
Example #30
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator, position_layer, model_size, latent_size): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator self.position_layer = position_layer self.model_size = model_size self.latent_size = latent_size self.sigmoid = nn.Sigmoid() # self.memory2latent = nn.Linear(self.model_size, self.latent_size) # self.latent2memory = nn.Linear(self.latent_size, self.model_size)