Python caffe.SGDSolver() Examples
The following are 30
code examples of caffe.SGDSolver().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
caffe
, or try the search function
.
Example #1
Source File: train.py From triplet with MIT License | 6 votes |
def __init__(self, solver, output_dir, pretrained_model=None, gpu_id=0, data=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir caffe.set_mode_gpu() caffe.set_device(gpu_id) self.solver = caffe.SGDSolver(solver) if pretrained_model is not None: print(('Loading pretrained model ' 'weights from {:s}').format(pretrained_model)) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_data(data)
Example #2
Source File: train.py From SubCNN with MIT License | 6 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir print 'Computing bounding-box regression targets...' if cfg.TRAIN.BBOX_REG: if cfg.IS_RPN: self.bbox_means, self.bbox_stds = gdl_roidb.add_bbox_regression_targets(roidb) else: self.bbox_means, self.bbox_stds = rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #3
Source File: test_solver.py From mix-and-match with MIT License | 6 votes |
def setUp(self): self.num_output = 13 net_f = simple_net_file(self.num_output) f = tempfile.NamedTemporaryFile(delete=False) f.write("""net: '""" + net_f + """' test_iter: 10 test_interval: 10 base_lr: 0.01 momentum: 0.9 weight_decay: 0.0005 lr_policy: 'inv' gamma: 0.0001 power: 0.75 display: 100 max_iter: 100 snapshot_after_train: false""") f.close() self.solver = caffe.SGDSolver(f.name) # also make sure get_solver runs caffe.get_solver(f.name) caffe.set_mode_cpu() # fill in valid labels self.solver.net.blobs['label'].data[...] = \ np.random.randint(self.num_output, size=self.solver.net.blobs['label'].data.shape) self.solver.test_nets[0].blobs['label'].data[...] = \ np.random.randint(self.num_output, size=self.solver.test_nets[0].blobs['label'].data.shape) os.remove(f.name) os.remove(net_f)
Example #4
Source File: test_solver.py From Deep-Learning-Based-Structural-Damage-Detection with MIT License | 6 votes |
def setUp(self): self.num_output = 13 net_f = simple_net_file(self.num_output) f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.write("""net: '""" + net_f + """' test_iter: 10 test_interval: 10 base_lr: 0.01 momentum: 0.9 weight_decay: 0.0005 lr_policy: 'inv' gamma: 0.0001 power: 0.75 display: 100 max_iter: 100 snapshot_after_train: false snapshot_prefix: "model" """) f.close() self.solver = caffe.SGDSolver(f.name) # also make sure get_solver runs caffe.get_solver(f.name) caffe.set_mode_cpu() # fill in valid labels self.solver.net.blobs['label'].data[...] = \ np.random.randint(self.num_output, size=self.solver.net.blobs['label'].data.shape) self.solver.test_nets[0].blobs['label'].data[...] = \ np.random.randint(self.num_output, size=self.solver.test_nets[0].blobs['label'].data.shape) os.remove(f.name) os.remove(net_f)
Example #5
Source File: train.py From uai-sdk with Apache License 2.0 | 6 votes |
def solve(proto, snapshot, gpus, timing, uid, rank): caffe.set_mode_gpu() caffe.set_device(gpus[rank]) caffe.set_solver_count(len(gpus)) caffe.set_solver_rank(rank) caffe.set_multiprocess(True) solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) nccl = caffe.NCCL(solver, uid) nccl.bcast() if timing and rank == 0: time(solver, nccl) else: solver.add_callback(nccl) if solver.param.layer_wise_reduce: solver.net.after_backward(nccl) solver.step(solver.param.max_iter)
Example #6
Source File: train.py From tripletloss with MIT License | 6 votes |
def __init__(self, solver_prototxt, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir caffe.set_mode_gpu() caffe.set_device(0) self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param)
Example #7
Source File: train.py From Deep-Learning-Based-Structural-Damage-Detection with MIT License | 6 votes |
def solve(proto, snapshot, gpus, timing, uid, rank): caffe.set_mode_gpu() caffe.set_device(gpus[rank]) caffe.set_solver_count(len(gpus)) caffe.set_solver_rank(rank) caffe.set_multiprocess(True) solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) nccl = caffe.NCCL(solver, uid) nccl.bcast() if timing and rank == 0: time(solver, nccl) else: solver.add_callback(nccl) if solver.param.layer_wise_reduce: solver.net.after_backward(nccl) solver.step(solver.param.max_iter)
Example #8
Source File: train.py From uai-sdk with Apache License 2.0 | 6 votes |
def solve(proto, snapshot, gpus, timing, uid, rank): caffe.set_mode_gpu() caffe.set_device(gpus[rank]) caffe.set_solver_count(len(gpus)) caffe.set_solver_rank(rank) caffe.set_multiprocess(True) solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) nccl = caffe.NCCL(solver, uid) nccl.bcast() if timing and rank == 0: time(solver, nccl) else: solver.add_callback(nccl) if solver.param.layer_wise_reduce: solver.net.after_backward(nccl) solver.step(solver.param.max_iter)
Example #9
Source File: train_large_file.py From uai-sdk with Apache License 2.0 | 6 votes |
def solve(proto, snapshot, gpus, timing, uid, rank): caffe.set_mode_gpu() caffe.set_device(gpus[rank]) caffe.set_solver_count(len(gpus)) caffe.set_solver_rank(rank) caffe.set_multiprocess(True) solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) nccl = caffe.NCCL(solver, uid) nccl.bcast() if timing and rank == 0: time(solver, nccl) else: solver.add_callback(nccl) if solver.param.layer_wise_reduce: solver.net.after_backward(nccl) solver.step(solver.param.max_iter)
Example #10
Source File: train.py From WPAL-network with GNU General Public License v3.0 | 6 votes |
def __init__(self, solver_prototxt, db, output_dir, do_flip, snapshot_path=None): """Initialize the SolverWrapper.""" self._output_dir = output_dir self._solver = caffe.SGDSolver(solver_prototxt) self._solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self._solver_param) infix = ('_' + cfg.TRAIN.SNAPSHOT_INFIX if cfg.TRAIN.SNAPSHOT_INFIX != '' else '') self._snapshot_prefix = self._solver_param.snapshot_prefix + infix + '_iter_' if snapshot_path is not None: print ('Loading snapshot weights from {:s}').format(snapshot_path) self._solver.net.copy_from(snapshot_path) snapshot_path = snapshot_path.split('/')[-1] if snapshot_path.startswith(self._snapshot_prefix): print 'Warning! Existing snapshots may be overriden by new snapshots!' self._db = db self._solver.net.layers[0].set_db(self._db, do_flip)
Example #11
Source File: multigpu.py From DTPP with BSD 2-Clause "Simplified" License | 6 votes |
def solve(proto, snapshot, gpus, timing, uid, rank): caffe.set_mode_gpu() caffe.set_device(gpus[rank]) caffe.set_solver_count(len(gpus)) caffe.set_solver_rank(rank) caffe.set_multiprocess(True) solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) nccl = caffe.NCCL(solver, uid) nccl.bcast() if timing and rank == 0: time(solver, nccl) else: solver.add_callback(nccl) if solver.param.layer_wise_reduce: solver.net.after_backward(nccl) solver.step(solver.param.max_iter)
Example #12
Source File: sequence_roi_train.py From TPN with MIT License | 6 votes |
def load_nets(args, cur_gpu): # initialize solver and feature net, # RNN should be initialized before CNN, because CNN cudnn conv layers # may assume using all available memory caffe.set_mode_gpu() caffe.set_device(cur_gpu) solver = caffe.SGDSolver(args.solver) if args.snapshot: print "Restoring history from {}".format(args.snapshot) solver.restore(args.snapshot) net = solver.net if args.weights: print "Copying weights from {}".format(args.weights) net.copy_from(args.weights) return solver, net
Example #13
Source File: tpn_train.py From TPN with MIT License | 6 votes |
def load_nets(args, cur_gpu): # initialize solver and feature net, # RNN should be initialized before CNN, because CNN cudnn conv layers # may assume using all available memory caffe.set_mode_gpu() caffe.set_device(cur_gpu) solver = caffe.SGDSolver(args.solver) if args.snapshot: print "Restoring history from {}".format(args.snapshot) solver.restore(args.snapshot) rnn = solver.net if args.weights: rnn.copy_from(args.weights) feature_net = caffe.Net(args.feature_net, args.feature_param, caffe.TEST) # apply bbox regression normalization on the net weights with open(args.bbox_mean, 'rb') as f: bbox_means = cPickle.load(f) with open(args.bbox_std, 'rb') as f: bbox_stds = cPickle.load(f) feature_net.params['bbox_pred_vid'][0].data[...] = \ feature_net.params['bbox_pred_vid'][0].data * bbox_stds[:, np.newaxis] feature_net.params['bbox_pred_vid'][1].data[...] = \ feature_net.params['bbox_pred_vid'][1].data * bbox_stds + bbox_means return solver, feature_net, rnn, bbox_means, bbox_stds
Example #14
Source File: train_net_multi.py From caffe-model with MIT License | 6 votes |
def solve(proto, gpus, uid, rank, max_iter): caffe.set_mode_gpu() caffe.set_device(gpus[rank]) caffe.set_solver_count(len(gpus)) caffe.set_solver_rank(rank) caffe.set_multiprocess(True) solver = caffe.SGDSolver(proto) if rank == 0: # solver.restore(_snapshot) solver.net.copy_from(_weights) solver.net.layers[0].get_gpu_id(gpus[rank]) nccl = caffe.NCCL(solver, uid) nccl.bcast() solver.add_callback(nccl) if solver.param.layer_wise_reduce: solver.net.after_backward(nccl) for _ in range(max_iter): solver.step(1)
Example #15
Source File: train.py From dpl with MIT License | 6 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #16
Source File: train.py From py-R-FCN with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #17
Source File: train.py From DSRG with MIT License | 5 votes |
def __init__(self, solver_prototxt, pretrained_model=None, snapshot_model=None): """Initialize the SolverWrapper.""" self.solver = caffe.SGDSolver(solver_prototxt) if snapshot_model is not None: self.solver.restore(snapshot_model) elif pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model)
Example #18
Source File: train.py From oicr with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #19
Source File: train-details.py From Scale-Adaptive-Network with MIT License | 5 votes |
def __init__(self, solver_prototxt, pretrained_model=None): """Initialize the SolverWrapper.""" self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model)
Example #20
Source File: train.py From Scale-Adaptive-Network with MIT License | 5 votes |
def __init__(self, solver_prototxt, pretrained_model=None, snapshot_model=None): """Initialize the SolverWrapper.""" self.solver = caffe.SGDSolver(solver_prototxt) if snapshot_model is not None: self.solver.restore(snapshot_model) elif pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model)
Example #21
Source File: train.py From uai-sdk with Apache License 2.0 | 5 votes |
def cpu_solve(proto, snapshot, timing): caffe.set_mode_cpu() solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) solver.step(solver.param.max_iter)
Example #22
Source File: train.py From caffe-faster-rcnn-resnet-fpn with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #23
Source File: view_blob_data_segm.py From nideep with BSD 2-Clause "Simplified" License | 5 votes |
def view_blob_label_segm(nb_imgs, path_solver): solver = caffe.SGDSolver(path_solver) for _ in xrange(nb_imgs): solver.net.forward() # train net d = solver.net.blobs['data'].data print d.shape d = np.squeeze(d, axis=(0,)) # get rid of batch elements dimensions y = cv2.cvtColor(cv2.merge([ch for ch in d]), cv.CV_RGB2BGR) #print y.dtype, y.max() cv2.imshow('data', y) d = solver.net.blobs['label'].data print d.shape d = np.squeeze(d, axis=(0,)) print d cv2.waitKey() return 0
Example #24
Source File: train.py From uai-sdk with Apache License 2.0 | 5 votes |
def cpu_solve(proto, snapshot, timing): caffe.set_mode_cpu() solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) solver.step(solver.param.max_iter)
Example #25
Source File: train.py From uai-sdk with Apache License 2.0 | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #26
Source File: train.py From uai-sdk with Apache License 2.0 | 5 votes |
def cpu_solve(proto, snapshot, timing): caffe.set_mode_cpu() solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) solver.step(solver.param.max_iter)
Example #27
Source File: train_large_file.py From uai-sdk with Apache License 2.0 | 5 votes |
def cpu_solve(proto, snapshot, timing): caffe.set_mode_cpu() solver = caffe.SGDSolver(proto) if snapshot and len(snapshot) != 0: solver.restore(snapshot) solver.step(solver.param.max_iter)
Example #28
Source File: extract_feature_tsn.py From DTPP with BSD 2-Clause "Simplified" License | 5 votes |
def text_save(content,filename,mode='a'): # Try to save a list variable in txt file. file = open(filename,mode) for i in range(len(content)): file.write(str(content[i])+' ') file.write('\n') file.close() # savefile = 'frame_feat_flow.txt' # if os.path.isfile(savefile): # os.remove(savefile) # # solver = caffe.SGDSolver(relative_path + '/deeptemporal/models/ucf101/flow_feat_solver.prototxt') # solver.net.copy_from(relative_path + "/ucf101_split_1_rgb_flow_models/ucf101_split_1_tsn_flow_reference_bn_inception.caffemodel")
Example #29
Source File: train.py From faster-rcnn-resnet with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)
Example #30
Source File: train.py From face-py-faster-rcnn with MIT License | 5 votes |
def __init__(self, solver_prototxt, roidb, output_dir, pretrained_model=None): """Initialize the SolverWrapper.""" self.output_dir = output_dir if (cfg.TRAIN.HAS_RPN and cfg.TRAIN.BBOX_REG and cfg.TRAIN.BBOX_NORMALIZE_TARGETS): # RPN can only use precomputed normalization because there are no # fixed statistics to compute a priori assert cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED if cfg.TRAIN.BBOX_REG: print 'Computing bounding-box regression targets...' self.bbox_means, self.bbox_stds = \ rdl_roidb.add_bbox_regression_targets(roidb) print 'done' self.solver = caffe.SGDSolver(solver_prototxt) if pretrained_model is not None: print ('Loading pretrained model ' 'weights from {:s}').format(pretrained_model) self.solver.net.copy_from(pretrained_model) self.solver_param = caffe_pb2.SolverParameter() with open(solver_prototxt, 'rt') as f: pb2.text_format.Merge(f.read(), self.solver_param) self.solver.net.layers[0].set_roidb(roidb)