Python torchvision.models.alexnet() Examples

The following are 30 code examples of torchvision.models.alexnet(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torchvision.models , or try the search function .
Example #1
Source File: test_attack_BlendedUniformNoiseAttack.py    From perceptron-benchmark with Apache License 2.0 6 votes vote down vote up
def test_untargeted_AlexNet(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.alexnet(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
Example #2
Source File: __main__.py    From gandissect with MIT License 6 votes vote down vote up
def test_dissection():
    verbose_progress(True)
    from torchvision.models import alexnet
    from torchvision import transforms
    model = InstrumentedModel(alexnet(pretrained=True))
    model.eval()
    # Load an alexnet
    model.retain_layers([
        ('features.0', 'conv1'),
        ('features.3', 'conv2'),
        ('features.6', 'conv3'),
        ('features.8', 'conv4'),
        ('features.10', 'conv5') ])
    # load broden dataset
    bds = BrodenDataset('dataset/broden',
            transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(IMAGE_MEAN, IMAGE_STDEV)]),
            size=100)
    # run dissect
    dissect('dissect/test', model, bds,
            examples_per_unit=10) 
Example #3
Source File: inference.py    From fine-tuning.pytorch with MIT License 6 votes vote down vote up
def getNetwork(args):
    if (args.net_type == 'alexnet'):
        net = models.alexnet(pretrained=args.finetune)
        file_name = 'alexnet'
    elif (args.net_type == 'vggnet'):
        if(args.depth == 16):
            net = models.vgg16(pretrained=args.finetune)
        file_name = 'vgg-%s' %(args.depth)
    elif (args.net_type == 'inception'):
        net = models.inception(pretrained=args.finetune)
        file_name = 'inceptino-v3'
    elif (args.net_type == 'resnet'):
        net = resnet(args.finetune, args.depth)
        file_name = 'resnet-%s' %(args.depth)
    else:
        print('Error : Network should be either [VGGNet / ResNet]')
        sys.exit(1)

    return net, file_name 
Example #4
Source File: cnn_benchmarks.py    From stacks-usecase with Apache License 2.0 6 votes vote down vote up
def select(self, model_name=None):
        """select models to be run"""
        logging.info("Run details")
        logging.info("=" * 71)
        models = [
            self.alexnet,
            self.resnet18,
            self.resnet50,
            self.vgg16,
            self.squeezenet,
        ]
        if model_name:
            self.models = [
                model for model in models for name in model_name if name == model.name
            ]
        logging.info("Selected model(s) :: ")
        for m in self.models:
            logging.info("%s ------------- Batchsize :: %s " % (m.name, m.batch))
        logging.info("=" * 71) 
Example #5
Source File: evaluate.py    From Robust-Lane-Detection-and-Tracking with MIT License 6 votes vote down vote up
def __init__(self,feature,hidden_unit, D_in, D_out):
        """
        In the constructor we instantiate two nn.Linear modules and assign them as
        member variables.
        """
        super(cnn_lstm, self).__init__()
        self.model_ft = models.alexnet(pretrained=True)
        # print (model_ft)

        self.num_ftrs = self.model_ft.classifier[6].in_features
        self.feature_model = list(self.model_ft.classifier.children())
        self.feature_model.pop()
        self.feature_model.pop()
        # feature_model.append(nn.Linear(num_ftrs, 3))
        self.feature_model.append(nn.Linear(self.num_ftrs, 1046))
        # self.feature_model.append(nn.Linear(self.num_ftrs, 524))
        self.feature_model.append(nn.Linear(1046, 100))
        # self.feature_model.append(nn.Linear(524, 100))

        self.model_ft.classifier = nn.Sequential(*self.feature_model)

        self.rnn = nn.LSTM(feature,hidden_unit,batch_first=True).cuda()
        self.linear = torch.nn.Linear(D_in, D_out).cuda() 
Example #6
Source File: run_py_node.py    From Robust-Lane-Detection-and-Tracking with MIT License 6 votes vote down vote up
def __init__(self,feature,hidden_unit, D_in, D_out):
        """
        In the constructor we instantiate two nn.Linear modules and assign them as
        member variables.
        """
        super(cnn_lstm, self).__init__()
        self.model_ft = models.alexnet(pretrained=True)
        # print (model_ft)

        self.num_ftrs = self.model_ft.classifier[6].in_features
        self.feature_model = list(self.model_ft.classifier.children())
        self.feature_model.pop()
        self.feature_model.pop()
        # feature_model.append(nn.Linear(num_ftrs, 3))
        self.feature_model.append(nn.Linear(self.num_ftrs, 1046))
        self.feature_model.append(nn.Linear(1046, 100))

        self.model_ft.classifier = nn.Sequential(*self.feature_model)

        self.rnn = nn.LSTM(feature,hidden_unit,batch_first=True).cuda()
        self.linear = torch.nn.Linear(D_in, D_out).cuda() 
Example #7
Source File: pretrained_networks.py    From PerceptualSimilarity with BSD 2-Clause "Simplified" License 6 votes vote down vote up
def __init__(self, requires_grad=False, pretrained=True):
        super(alexnet, self).__init__()
        alexnet_pretrained_features = tv.alexnet(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(2):
            self.slice1.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(2, 5):
            self.slice2.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(10, 12):
            self.slice5.add_module(str(x), alexnet_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
Example #8
Source File: pretrained_networks.py    From TecoGAN with Apache License 2.0 6 votes vote down vote up
def __init__(self, requires_grad=False, pretrained=True):
        super(alexnet, self).__init__()
        alexnet_pretrained_features = models.alexnet(pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(2):
            self.slice1.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(2, 5):
            self.slice2.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(10, 12):
            self.slice5.add_module(str(x), alexnet_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
Example #9
Source File: pretrained_networks.py    From SMIT with MIT License 6 votes vote down vote up
def __init__(self, requires_grad=False, pretrained=True):
        super(alexnet, self).__init__()
        alexnet_pretrained_features = models.alexnet(
            pretrained=pretrained).features
        self.slice1 = torch.nn.Sequential()
        self.slice2 = torch.nn.Sequential()
        self.slice3 = torch.nn.Sequential()
        self.slice4 = torch.nn.Sequential()
        self.slice5 = torch.nn.Sequential()
        self.N_slices = 5
        for x in range(2):
            self.slice1.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(2, 5):
            self.slice2.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(5, 8):
            self.slice3.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(8, 10):
            self.slice4.add_module(str(x), alexnet_pretrained_features[x])
        for x in range(10, 12):
            self.slice5.add_module(str(x), alexnet_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False 
Example #10
Source File: test_attack_MotionBlurAttack.py    From perceptron-benchmark with Apache License 2.0 6 votes vote down vote up
def test_untargeted_AlexNet(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.alexnet(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
Example #11
Source File: test_attack_AdditiveUniformNoiseAttack.py    From perceptron-benchmark with Apache License 2.0 6 votes vote down vote up
def test_untargeted_AlexNet(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.alexnet(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
Example #12
Source File: test_attack_AdditiveGaussianNoiseAttack.py    From perceptron-benchmark with Apache License 2.0 6 votes vote down vote up
def test_untargeted_AlexNet(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.alexnet(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
Example #13
Source File: test_attack_Gaussian_blur.py    From perceptron-benchmark with Apache License 2.0 6 votes vote down vote up
def test_untargeted_AlexNet(image, label=None):
    import torch
    import torchvision.models as models
    from perceptron.models.classification import PyTorchModel
    mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    model_pyt = models.alexnet(pretrained=True).eval()
    if torch.cuda.is_available():
        model_pyt = model_pyt.cuda()
    model = PyTorchModel(
        model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std))
    print(np.argmax(model.predictions(image)))
    attack = Attack(model, criterion=Misclassification())
    adversarial_obj = attack(image, label, unpack=False, epsilons=10000)
    distance = adversarial_obj.distance
    adversarial = adversarial_obj.image
    return distance, adversarial 
Example #14
Source File: extractor.py    From DeepSpectrum with GNU General Public License v3.0 6 votes vote down vote up
def __init__(self, images, model_key, layer, batch_size=256):
        super().__init__(images, batch_size)
        self.models = {
            "alexnet": models.alexnet,
            "squeezenet": models.squeezenet1_1,
            "googlenet": models.googlenet
        }
        self.preprocessors = {
            "alexnet": self.__preprocess_alexnet,
            "squeezenet": self.__preprocess_squeezenet,
            "googlenet": self.__preprocess_googlenet
        }
        self.batch_size = batch_size
        self.layer = layer
        self.model_key = model_key

        self.model, self.feature_layer, self.output_size = self.__build_model(
            layer) 
Example #15
Source File: img_to_vec.py    From img2vec with MIT License 5 votes vote down vote up
def _get_model_and_layer(self, model_name, layer):
        """ Internal method for getting layer from model
        :param model_name: model name such as 'resnet-18'
        :param layer: layer as a string for resnet-18 or int for alexnet
        :returns: pytorch model, selected layer
        """
        if model_name == 'resnet-18':
            model = models.resnet18(pretrained=True)
            if layer == 'default':
                layer = model._modules.get('avgpool')
                self.layer_output_size = 512
            else:
                layer = model._modules.get(layer)

            return model, layer

        elif model_name == 'alexnet':
            model = models.alexnet(pretrained=True)
            if layer == 'default':
                layer = model.classifier[-2]
                self.layer_output_size = 4096
            else:
                layer = model.classifier[-layer]

            return model, layer

        else:
            raise KeyError('Model %s was not found' % model_name) 
Example #16
Source File: test_torchvision_models.py    From pytorch-cnn-finetune with MIT License 5 votes vote down vote up
def test_alexnet_model_with_default_classifier(input_var):
    original_model = torchvision_models.alexnet(pretrained=True)
    original_model(input_var)
    finetune_model = make_model(
        'alexnet',
        num_classes=1000,
        use_original_classifier=True,
        input_size=(224, 224),
        pretrained=True,
    )
    assert_equal_model_outputs(input_var, original_model, finetune_model) 
Example #17
Source File: test_torchvision_models.py    From pytorch-cnn-finetune with MIT License 5 votes vote down vote up
def test_alexnet_model_with_another_input_size(input_var, pool):
    model = make_model(
        'alexnet',
        num_classes=1000,
        input_size=(256, 256),
        pool=pool,
        pretrained=True,
    )
    model(input_var) 
Example #18
Source File: torchvision_models.py    From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def alexnet(num_classes=1000, pretrained='imagenet'):
    r"""AlexNet model architecture from the
    `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
    """
    # https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
    model = models.alexnet(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['alexnet'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_alexnet(model)
    return model

###############################################################
# DenseNets 
Example #19
Source File: extractor.py    From DeepSpectrum with GNU General Public License v3.0 5 votes vote down vote up
def __build_model(self, layer):

        assert (self.model_key in self.models
                ), f"Invalid model for pytorch extractor. Available models: \
            {self.models}"

        base_model = self.models[self.model_key](pretrained=True)
        base_model.eval()
        if self.model_key == "alexnet":
            log.debug(f'Layout of base model: \n{base_model}')
            layers = {"fc6": -5, "fc7": -2}
            assert (layer in layers
                    ), f"Invalid layer key. Available layers: {layers.keys}"

            feature_layer = base_model.classifier[layers[layer]]
            return base_model, feature_layer, (4096, )
        elif self.model_key == "squeezenet":
            log.info(
                f'Disregarding user choice of feature layer: Only one layer is currently available for squeezenet.'
            )
            base_model = torch.nn.Sequential(
                base_model.features,
                torch.nn.AdaptiveAvgPool2d(output_size=(2, 2)))
            feature_layer = base_model[-1]
            log.debug(f'Layout of model: \n{base_model}')

            return base_model, feature_layer, (512, 2, 2)

        elif self.model_key == "googlenet":
            layers = {"avgpool": base_model.avgpool, "fc": base_model.fc}
            assert (layer in layers
                    ), f"Invalid layer key. Available layers: {layers.keys}"
            feature_layer = layers[layer]
            log.debug(f'Layout of model: \n{base_model}')
            return base_model, feature_layer, (1024, 1, 1)

        else:
            pass 
Example #20
Source File: basenet.py    From MCD_DA with MIT License 5 votes vote down vote up
def __init__(self, num_classes=12):
        super(Classifier, self).__init__()
        model_ft = models.alexnet(pretrained=False)
        mod = list(model_ft.classifier.children())
        mod.pop()
        mod.append(nn.Linear(4096,num_classes))
        self.classifier = nn.Sequential(*mod) 
Example #21
Source File: basenet.py    From MCD_DA with MIT License 5 votes vote down vote up
def __init__(self):
        super(AlexNet_office, self).__init__()
        model_ft = models.alexnet(pretrained=True)
        mod = list(model_ft.features.children())
        self.features = model_ft.features#nn.Sequential(*mod)        
        mod = list(model_ft.classifier.children())
        mod.pop()
        print(mod)
        self.classifier = nn.Sequential(*mod) 
Example #22
Source File: basenet.py    From MCD_DA with MIT License 5 votes vote down vote up
def __init__(self):
        super(AlexNet, self).__init__()
        model_ft = models.alexnet(pretrained=True)
        mod = list(model_ft.features.children())
        self.features = model_ft.features#nn.Sequential(*mod)        
        print(self.features[0])
        #mod = list(model_ft.classifier.children())
        #mod.pop()

        #self.classifier = nn.Sequential(*mod) 
Example #23
Source File: main.py    From gradcam.pytorch with MIT License 5 votes vote down vote up
def getNetwork(args):
    if (args.net_type == 'alexnet'):
        net = models.alexnet(pretrained=args.finetune)
        file_name = 'alexnet'
    elif (args.net_type == 'vggnet'):
        if(args.depth == 11):
            net = models.vgg11(pretrained=args.finetune)
        elif(args.depth == 13):
            net = models.vgg13(pretrained=args.finetune)
        elif(args.depth == 16):
            net = models.vgg16(pretrained=args.finetune)
        elif(args.depth == 19):
            net = models.vgg19(pretrained=args.finetune)
        else:
            print('Error : VGGnet should have depth of either [11, 13, 16, 19]')
            sys.exit(1)
        file_name = 'vgg-%s' %(args.depth)
    elif (args.net_type == 'resnet'):
        net = resnet(args.finetune, args.depth)

        file_name = 'resnet-%s' %(args.depth)
    else:
        print('Error : Network should be either [alexnet / vggnet / resnet / densenet]')
        sys.exit(1)

    return net, file_name 
Example #24
Source File: alexnet-extraction.py    From DEMUD with Apache License 2.0 5 votes vote down vote up
def usage():
    print("usage: python alexnet-extraction.py dataset_dir out_dir layer batch")
    sys.exit(1) 
Example #25
Source File: misc_functions.py    From pytorch-cnn-visualizations with MIT License 5 votes vote down vote up
def get_example_params(example_index):
    """
        Gets used variables for almost all visualizations, like the image, model etc.

    Args:
        example_index (int): Image id to use from examples

    returns:
        original_image (numpy arr): Original image read from the file
        prep_img (numpy_arr): Processed image
        target_class (int): Target class for the image
        file_name_to_export (string): File name to export the visualizations
        pretrained_model(Pytorch model): Model to use for the operations
    """
    # Pick one of the examples
    example_list = (('../input_images/snake.jpg', 56),
                    ('../input_images/cat_dog.png', 243),
                    ('../input_images/spider.png', 72))
    img_path = example_list[example_index][0]
    target_class = example_list[example_index][1]
    file_name_to_export = img_path[img_path.rfind('/')+1:img_path.rfind('.')]
    # Read image
    original_image = Image.open(img_path).convert('RGB')
    # Process image
    prep_img = preprocess_image(original_image)
    # Define model
    pretrained_model = models.alexnet(pretrained=True)
    return (original_image,
            prep_img,
            target_class,
            file_name_to_export,
            pretrained_model) 
Example #26
Source File: main.py    From fine-tuning.pytorch with MIT License 5 votes vote down vote up
def getNetwork(args):
    if (args.net_type == 'alexnet'):
        net = models.alexnet(pretrained=args.finetune)
        file_name = 'alexnet'
    elif (args.net_type == 'vggnet'):
        if(args.depth == 11):
            net = models.vgg11(pretrained=args.finetune)
        elif(args.depth == 13):
            net = models.vgg13(pretrained=args.finetune)
        elif(args.depth == 16):
            net = models.vgg16(pretrained=args.finetune)
        elif(args.depth == 19):
            net = models.vgg19(pretrained=args.finetune)
        else:
            print('Error : VGGnet should have depth of either [11, 13, 16, 19]')
            sys.exit(1)
        file_name = 'vgg-%s' %(args.depth)
    elif (args.net_type == 'squeezenet'):
        net = models.squeezenet1_0(pretrained=args.finetune)
        file_name = 'squeeze'
    elif (args.net_type == 'resnet'):
        net = resnet(args.finetune, args.depth)
        file_name = 'resnet-%s' %(args.depth)
    elif (args.net_type == 'inception'):
        net = pretrainedmodels.inceptionv3(num_classes=1000, pretrained='imagenet')
        file_name = 'inception-v3'
    elif (args.net_type == 'xception'):
        net = pretrainedmodels.xception(num_classes=1000, pretrained='imagenet')
        file_name = 'xception'
    else:
        print('Error : Network should be either [alexnet / squeezenet / vggnet / resnet]')
        sys.exit(1)

    return net, file_name 
Example #27
Source File: misc.py    From LightNet with MIT License 5 votes vote down vote up
def get_params(example_index):
    """
        Gets used variables for almost all visualizations, like the image, model etc.

    Args:
        example_index (int): Image id to use from examples

    returns:
        original_image (numpy arr): Original image read from the file
        prep_img (numpy_arr): Processed image
        target_class (int): Target class for the image
        file_name_to_export (string): File name to export the visualizations
        pretrained_model(Pytorch model): Model to use for the operations
    """
    # Pick one of the examples
    example_list = [['../input_images/snake.jpg', 56],
                    ['../input_images/cat_dog.png', 243],
                    ['../input_images/spider.png', 72]]
    selected_example = example_index
    img_path = example_list[selected_example][0]
    target_class = example_list[selected_example][1]
    file_name_to_export = img_path[img_path.rfind('/')+1:img_path.rfind('.')]
    # Read image
    original_image = cv2.imread(img_path, 1)
    # Process image
    prep_img = preprocess_image(original_image)
    # Define model
    pretrained_model = models.alexnet(pretrained=True)
    return (original_image,
            prep_img,
            target_class,
            file_name_to_export,
            pretrained_model) 
Example #28
Source File: backbone.py    From transferlearning with MIT License 5 votes vote down vote up
def __init__(self):
        super(AlexNetFc, self).__init__()
        model_alexnet = models.alexnet(pretrained=True)
        self.features = model_alexnet.features
        self.classifier = nn.Sequential()
        for i in range(6):
            self.classifier.add_module(
                "classifier"+str(i), model_alexnet.classifier[i])
        self.__in_features = model_alexnet.classifier[6].in_features 
Example #29
Source File: torchvision_models.py    From pretrained-models.pytorch with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def alexnet(num_classes=1000, pretrained='imagenet'):
    r"""AlexNet model architecture from the
    `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
    """
    # https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py
    model = models.alexnet(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['alexnet'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_alexnet(model)
    return model

###############################################################
# DenseNets 
Example #30
Source File: test_gradient_ascent.py    From flashtorch with MIT License 5 votes vote down vote up
def model():
    return models.alexnet().features