Python torchvision.models.vgg16() Examples
The following are 30
code examples of torchvision.models.vgg16().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models
, or try the search function
.
Example #1
Source File: finetune.py From transferlearning with MIT License | 7 votes |
def __init__(self): super(DANNet, self).__init__() model = models.vgg16(pretrained=True) #False self.features = model.features for param in self.features.parameters(): #NOTE: prune:True // finetune:False param.requires_grad = True self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(25088, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), ) self.cls_fc = nn.Linear(4096, 31)
Example #2
Source File: croppingModel.py From Grid-Anchor-based-Image-Cropping-Pytorch with MIT License | 7 votes |
def __init__(self, alignsize = 8, reddim = 32, loadweight = True, model = None, downsample = 4): super(crop_model_multi_scale_shared, self).__init__() if model == 'shufflenetv2': self.Feat_ext = shufflenetv2_base(loadweight,downsample) self.DimRed = nn.Conv2d(812, reddim, kernel_size=1, padding=0) elif model == 'mobilenetv2': self.Feat_ext = mobilenetv2_base(loadweight,downsample) self.DimRed = nn.Conv2d(448, reddim, kernel_size=1, padding=0) elif model == 'vgg16': self.Feat_ext = vgg_base(loadweight,downsample) self.DimRed = nn.Conv2d(1536, reddim, kernel_size=1, padding=0) elif model == 'resnet50': self.Feat_ext = resnet50_base(loadweight,downsample) self.DimRed = nn.Conv2d(3584, reddim, kernel_size=1, padding=0) self.downsample2 = nn.UpsamplingBilinear2d(scale_factor=1.0/2.0) self.upsample2 = nn.UpsamplingBilinear2d(scale_factor=2.0) self.RoIAlign = RoIAlignAvg(alignsize, alignsize, 1.0/2**downsample) self.RoDAlign = RoDAlignAvg(alignsize, alignsize, 1.0/2**downsample) self.FC_layers = fc_layers(reddim*2, alignsize)
Example #3
Source File: test_attack_BlendedUniformNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_vgg16(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.vgg16(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #4
Source File: fcn.py From pytorch-semantic-segmentation with MIT License | 6 votes |
def __init__(self, num_classes): super().__init__() feats = list(models.vgg16(pretrained=True).features.children()) self.feats = nn.Sequential(*feats[0:9]) self.feat3 = nn.Sequential(*feats[10:16]) self.feat4 = nn.Sequential(*feats[17:23]) self.feat5 = nn.Sequential(*feats[24:30]) for m in self.modules(): if isinstance(m, nn.Conv2d): m.requires_grad = False self.fconn = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), ) self.score_feat3 = nn.Conv2d(256, num_classes, 1) self.score_feat4 = nn.Conv2d(512, num_classes, 1) self.score_fconn = nn.Conv2d(4096, num_classes, 1)
Example #5
Source File: test-ww.py From AutoDL-Projects with MIT License | 6 votes |
def main(): # model = models.vgg19_bn(pretrained=True) # _, summary = weight_watcher.analyze(model, alphas=False) # for key, value in summary.items(): # print('{:10s} : {:}'.format(key, value)) _, summary = weight_watcher.analyze(models.vgg13(pretrained=True), alphas=False) print('vgg-13 : {:}'.format(summary['lognorm'])) _, summary = weight_watcher.analyze(models.vgg13_bn(pretrained=True), alphas=False) print('vgg-13-BN : {:}'.format(summary['lognorm'])) _, summary = weight_watcher.analyze(models.vgg16(pretrained=True), alphas=False) print('vgg-16 : {:}'.format(summary['lognorm'])) _, summary = weight_watcher.analyze(models.vgg16_bn(pretrained=True), alphas=False) print('vgg-16-BN : {:}'.format(summary['lognorm'])) _, summary = weight_watcher.analyze(models.vgg19(pretrained=True), alphas=False) print('vgg-19 : {:}'.format(summary['lognorm'])) _, summary = weight_watcher.analyze(models.vgg19_bn(pretrained=True), alphas=False) print('vgg-19-BN : {:}'.format(summary['lognorm']))
Example #6
Source File: basenet.py From MCD_DA with MIT License | 6 votes |
def __init__(self, num_classes=12): super(ClassifierMMD, self).__init__() model_ft = models.vgg16(pretrained=True) mod = list(model_ft.classifier.children()) mod.pop() self.classifier1 = nn.Sequential(*mod) self.classifier2 = nn.Sequential( nn.Dropout(), nn.Linear(4096, 1000), nn.ReLU(inplace=True), ) self.classifier3 = nn.Sequential( nn.BatchNorm1d(1000,affine=True), nn.Dropout(), nn.ReLU(inplace=True), ) self.last = nn.Linear(1000, num_classes)
Example #7
Source File: fcn.py From pytorch-semantic-segmentation with MIT License | 6 votes |
def __init__(self, num_classes): super().__init__() feats = list(models.vgg16(pretrained=True).features.children()) self.feats = nn.Sequential(*feats[0:16]) self.feat4 = nn.Sequential(*feats[17:23]) self.feat5 = nn.Sequential(*feats[24:30]) self.fconn = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), ) self.score_fconn = nn.Conv2d(4096, num_classes, 1) self.score_feat4 = nn.Conv2d(512, num_classes, 1)
Example #8
Source File: network.py From piwise with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, num_classes): super().__init__() feats = list(models.vgg16(pretrained=True).features.children()) self.feats = nn.Sequential(*feats[0:9]) self.feat3 = nn.Sequential(*feats[10:16]) self.feat4 = nn.Sequential(*feats[17:23]) self.feat5 = nn.Sequential(*feats[24:30]) for m in self.modules(): if isinstance(m, nn.Conv2d): m.requires_grad = False self.fconn = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), ) self.score_feat3 = nn.Conv2d(256, num_classes, 1) self.score_feat4 = nn.Conv2d(512, num_classes, 1) self.score_fconn = nn.Conv2d(4096, num_classes, 1)
Example #9
Source File: network.py From piwise with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, num_classes): super().__init__() feats = list(models.vgg16(pretrained=True).features.children()) self.feats = nn.Sequential(*feats[0:16]) self.feat4 = nn.Sequential(*feats[17:23]) self.feat5 = nn.Sequential(*feats[24:30]) self.fconn = nn.Sequential( nn.Conv2d(512, 4096, 7), nn.ReLU(inplace=True), nn.Dropout(), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Dropout(), ) self.score_fconn = nn.Conv2d(4096, num_classes, 1) self.score_feat4 = nn.Conv2d(512, num_classes, 1)
Example #10
Source File: network.py From piwise with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, classes): super().__init__() vgg16 = models.vgg16(pretrained=True) features = vgg16.features self.dec1 = features[0: 4] self.dec2 = features[5: 9] self.dec3 = features[10: 16] self.dec4 = features[17: 23] self.dec5 = features[24: -1] for m in self.modules(): if isinstance(m, nn.Conv2d): m.requires_grad = False self.enc5 = SegNetEnc(512, 512, 1) self.enc4 = SegNetEnc(512, 256, 1) self.enc3 = SegNetEnc(256, 128, 1) self.enc2 = SegNetEnc(128, 64, 0) self.final = nn.Sequential(*[ nn.Conv2d(64, classes, 3, padding=1), nn.BatchNorm2d(classes), nn.ReLU(inplace=True) ])
Example #11
Source File: vgg.py From pytorch-multiple-style-transfer with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, requires_grad=False): super(Vgg16, self).__init__() vgg_pretrained_features = models.vgg16(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() for x in range(4): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(4, 9): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(9, 16): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(16, 23): self.slice4.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False
Example #12
Source File: tools.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def get_image_format(framework_name, model_name): """Return the correct input range and shape for target framework and model""" special_shape = {'pytorch':{'inception_v3': (299, 299)}, 'keras': {'xception': (299, 299), 'inception_v3':(299, 299), 'yolo_v3': (416, 416), 'ssd300': (300, 300)}} special_bound = {'keras':{'vgg16':(0, 255), 'vgg19':(0, 255), 'resnet50':(0, 255), 'ssd300': (0, 255)}, 'cloud': {'aip_antiporn': (0, 255), 'google_safesearch': (0, 255), 'google_objectdetection': (0, 255)}} default_shape = (224, 224) default_bound = (0, 1) if special_shape.get(framework_name, None): if special_shape[framework_name].get(model_name, None): default_shape = special_shape[framework_name][model_name] if special_bound.get(framework_name, None): if special_bound[framework_name].get(model_name, None): default_bound = special_bound[framework_name][model_name] return {'shape': default_shape, 'bounds': default_bound}
Example #13
Source File: test_attack_AdditiveUniformNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_vgg16(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.vgg16(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #14
Source File: vgg.py From examples with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, requires_grad=False): super(Vgg16, self).__init__() vgg_pretrained_features = models.vgg16(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() for x in range(4): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(4, 9): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(9, 16): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(16, 23): self.slice4.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False
Example #15
Source File: test_attack_SaltAndPepperNoiseAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_vgg16(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.vgg16(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #16
Source File: test_attack_Gaussian_blur.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_vgg16(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.vgg16(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #17
Source File: test_attack_MotionBlurAttack.py From perceptron-benchmark with Apache License 2.0 | 6 votes |
def test_untargeted_vgg16(image, label=None): import torch import torchvision.models as models from perceptron.models.classification import PyTorchModel mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) model_pyt = models.vgg16(pretrained=True).eval() if torch.cuda.is_available(): model_pyt = model_pyt.cuda() model = PyTorchModel( model_pyt, bounds=(0, 1), num_classes=1000, preprocessing=(mean, std)) print(np.argmax(model.predictions(image))) attack = Attack(model, criterion=Misclassification()) adversarial_obj = attack(image, label, unpack=False, epsilons=10000) distance = adversarial_obj.distance adversarial = adversarial_obj.image return distance, adversarial
Example #18
Source File: cnn_benchmarks.py From stacks-usecase with Apache License 2.0 | 6 votes |
def select(self, model_name=None): """select models to be run""" logging.info("Run details") logging.info("=" * 71) models = [ self.alexnet, self.resnet18, self.resnet50, self.vgg16, self.squeezenet, ] if model_name: self.models = [ model for model in models for name in model_name if name == model.name ] logging.info("Selected model(s) :: ") for m in self.models: logging.info("%s ------------- Batchsize :: %s " % (m.name, m.batch)) logging.info("=" * 71)
Example #19
Source File: croppingModel.py From Grid-Anchor-based-Image-Cropping-Pytorch with MIT License | 6 votes |
def __init__(self, alignsize = 8, reddim = 32, loadweight = True, model = None, downsample = 4): super(crop_model_multi_scale_individual, self).__init__() if model == 'shufflenetv2': self.Feat_ext1 = shufflenetv2_base(loadweight,downsample) self.Feat_ext2 = shufflenetv2_base(loadweight,downsample) self.Feat_ext3 = shufflenetv2_base(loadweight,downsample) self.DimRed = nn.Conv2d(232, reddim, kernel_size=1, padding=0) elif model == 'mobilenetv2': self.Feat_ext1 = mobilenetv2_base(loadweight,downsample) self.Feat_ext2 = mobilenetv2_base(loadweight,downsample) self.Feat_ext3 = mobilenetv2_base(loadweight,downsample) self.DimRed = nn.Conv2d(96, reddim, kernel_size=1, padding=0) elif model == 'vgg16': self.Feat_ext1 = vgg_base(loadweight,downsample) self.Feat_ext2 = vgg_base(loadweight,downsample) self.Feat_ext3 = vgg_base(loadweight,downsample) self.DimRed = nn.Conv2d(512, reddim, kernel_size=1, padding=0) self.downsample2 = nn.UpsamplingBilinear2d(scale_factor=1.0/2.0) self.upsample2 = nn.UpsamplingBilinear2d(scale_factor=2.0) self.RoIAlign = RoIAlignAvg(alignsize, alignsize, 1.0/2**downsample) self.RoDAlign = RoDAlignAvg(alignsize, alignsize, 1.0/2**downsample) self.FC_layers = fc_layers(reddim*2, alignsize)
Example #20
Source File: croppingModel.py From Grid-Anchor-based-Image-Cropping-Pytorch with MIT License | 6 votes |
def __init__(self, alignsize = 8, reddim = 32, loadweight = True, model = None, downsample = 4): super(crop_model_multi_scale_shared, self).__init__() if model == 'shufflenetv2': self.Feat_ext = shufflenetv2_base(loadweight,downsample) self.DimRed = nn.Conv2d(812, reddim, kernel_size=1, padding=0) elif model == 'mobilenetv2': self.Feat_ext = mobilenetv2_base(loadweight,downsample) self.DimRed = nn.Conv2d(448, reddim, kernel_size=1, padding=0) elif model == 'vgg16': self.Feat_ext = vgg_base(loadweight,downsample) self.DimRed = nn.Conv2d(1536, reddim, kernel_size=1, padding=0) elif model == 'resnet50': self.Feat_ext = resnet50_base(loadweight,downsample) self.DimRed = nn.Conv2d(3584, reddim, kernel_size=1, padding=0) self.downsample2 = nn.UpsamplingBilinear2d(scale_factor=1.0/2.0) self.upsample2 = nn.UpsamplingBilinear2d(scale_factor=2.0) self.RoIAlign = RoIAlignAvg(alignsize, alignsize, 1.0/2**downsample) self.RoDAlign = RoDAlignAvg(alignsize, alignsize, 1.0/2**downsample) self.FC_layers = fc_layers(reddim*2, alignsize)
Example #21
Source File: vgg16.py From NeuralBabyTalk with MIT License | 6 votes |
def __init__(self, opt, pretrained=True): super(vgg16, self).__init__() self.model_path = '%s/imagenet_weights/vgg16_caffe.pth' %(opt.data_path) self.pretrained = pretrained vgg = models.vgg16() vgg.classifier = nn.Sequential(*list(vgg.classifier._modules.values())[:-1]) self.fc = vgg.classifier self.pooling = nn.AdaptiveAvgPool2d((7,7)) if self.pretrained: print("Loading pretrained weights from %s" %(self.model_path)) state_dict = torch.load(self.model_path) vgg.load_state_dict({k:v for k,v in state_dict.items() if k in vgg.state_dict()}) # not using the last maxpool layer self.cnn_net = nn.Sequential(*list(vgg.features._modules.values())[:-1])
Example #22
Source File: croppingModel.py From Grid-Anchor-based-Image-Cropping-Pytorch with MIT License | 6 votes |
def __init__(self, alignsize = 8, reddim = 32, loadweight = True, model = None, downsample = 4): super(crop_model_multi_scale_individual, self).__init__() if model == 'shufflenetv2': self.Feat_ext1 = shufflenetv2_base(loadweight,downsample) self.Feat_ext2 = shufflenetv2_base(loadweight,downsample) self.Feat_ext3 = shufflenetv2_base(loadweight,downsample) self.DimRed = nn.Conv2d(232, reddim, kernel_size=1, padding=0) elif model == 'mobilenetv2': self.Feat_ext1 = mobilenetv2_base(loadweight,downsample) self.Feat_ext2 = mobilenetv2_base(loadweight,downsample) self.Feat_ext3 = mobilenetv2_base(loadweight,downsample) self.DimRed = nn.Conv2d(96, reddim, kernel_size=1, padding=0) elif model == 'vgg16': self.Feat_ext1 = vgg_base(loadweight,downsample) self.Feat_ext2 = vgg_base(loadweight,downsample) self.Feat_ext3 = vgg_base(loadweight,downsample) self.DimRed = nn.Conv2d(512, reddim, kernel_size=1, padding=0) self.downsample2 = nn.UpsamplingBilinear2d(scale_factor=1.0/2.0) self.upsample2 = nn.UpsamplingBilinear2d(scale_factor=2.0) self.RoIAlign = RoIAlignAvg(alignsize, alignsize, 1.0/2**downsample) self.RoDAlign = RoDAlignAvg(alignsize, alignsize, 1.0/2**downsample) self.FC_layers = fc_layers(reddim*2, alignsize)
Example #23
Source File: fcn.py From binseg_pytoch with Apache License 2.0 | 6 votes |
def __init__(self, num_classes): super(FCN16, self).__init__() feats = list(models.vgg16(pretrained=True).features.children()) self.feats = nn.Sequential(*feats[0:17]) self.pool4 = nn.Sequential(*feats[17:24]) self.pool5 = nn.Sequential(*feats[24:]) self.fconn = nn.Sequential(nn.Conv2d(512, 4096, 7, padding=3), nn.ReLU(inplace=True), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Conv2d(4096, num_classes, 1) ) self.score_pool4 = nn.Conv2d(512, num_classes, 1) self.activation = nn.Sigmoid()
Example #24
Source File: fcn.py From binseg_pytoch with Apache License 2.0 | 6 votes |
def __init__(self, num_classes): super(FCN8, self).__init__() feats = list(models.vgg16(pretrained=True).features.children()) self.feats = nn.Sequential(*feats[0:10]) self.pool3= nn.Sequential(*feats[10:17]) self.pool4 = nn.Sequential(*feats[17:24]) self.pool5 = nn.Sequential(*feats[24:]) self.fconn = nn.Sequential(nn.Conv2d(512, 4096, 7, padding=3), nn.ReLU(inplace=True), nn.Conv2d(4096, 4096, 1), nn.ReLU(inplace=True), nn.Conv2d(4096, num_classes, 1) ) self.score_pool3 = nn.Conv2d(256, num_classes, 1) self.score_pool4 = nn.Conv2d(512, num_classes, 1) self.activation = nn.Sigmoid()
Example #25
Source File: segnet.py From binseg_pytoch with Apache License 2.0 | 6 votes |
def __init__(self, num_classes): super(SegNet, self).__init__() modules= list(models.vgg16(pretrained=True).features.children()) self.conv1 = nn.Sequential(*modules[0:4]) self.conv2 = nn.Sequential(*modules[5:9]) self.conv3 = nn.Sequential(*modules[10:16]) self.conv4 = nn.Sequential(*modules[17:23]) self.conv5 = nn.Sequential(*modules[24:30]) self.dec512 = DecodeBlock(512,512,3,1,num_layers=3) self.dec256 = DecodeBlock(512, 256, 3, 1, num_layers=3) self.dec128 = DecodeBlock(256, 128, 3, 1, num_layers=3) self.dec64 = DecodeBlock(128, 64, 3, 1, num_layers=2) self.final = nn.Sequential(nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), nn.Conv2d(64, 1, kernel_size=3, padding=1)) self.activation = nn.Sigmoid() initialize_weights(self.dec512,self.dec256,self.dec128,self.dec64, self.final)
Example #26
Source File: models.py From SPN.pytorch with MIT License | 6 votes |
def vgg16_sp(num_classes, pretrained=True, num_maps=1024): model = models.vgg16(pretrained=False) if pretrained: model_path = 'models/VGG16_ImageNet.pt' if os.path.isfile(model_path): state_dict = torch.load(model_path) model.load_state_dict(state_dict) else: print('Please download the pretrained VGG16 into ./models') num_features = model.features[28].out_channels pooling = nn.Sequential() pooling.add_module('adconv', nn.Conv2d(num_features, num_maps, kernel_size=3, stride=1, padding=1, groups=2, bias=True)) pooling.add_module('maps', nn.ReLU()) pooling.add_module('sp', SoftProposal()) pooling.add_module('sum', SpatialSumOverMap()) return SPNetWSL(model, num_classes, num_maps, pooling)
Example #27
Source File: inference.py From fine-tuning.pytorch with MIT License | 6 votes |
def getNetwork(args): if (args.net_type == 'alexnet'): net = models.alexnet(pretrained=args.finetune) file_name = 'alexnet' elif (args.net_type == 'vggnet'): if(args.depth == 16): net = models.vgg16(pretrained=args.finetune) file_name = 'vgg-%s' %(args.depth) elif (args.net_type == 'inception'): net = models.inception(pretrained=args.finetune) file_name = 'inceptino-v3' elif (args.net_type == 'resnet'): net = resnet(args.finetune, args.depth) file_name = 'resnet-%s' %(args.depth) else: print('Error : Network should be either [VGGNet / ResNet]') sys.exit(1) return net, file_name
Example #28
Source File: faster_rcnn_vgg16.py From FATE with Apache License 2.0 | 6 votes |
def decom_vgg16(): # the 30th layer of features is relu of conv5_3 if opt.caffe_pretrain: model = vgg16(pretrained=False) if not opt.load_path: model.load_state_dict(t.load(opt.caffe_pretrain_path)) else: model = vgg16(not opt.load_path) features = list(model.features)[:30] classifier = model.classifier classifier = list(classifier) del classifier[6] if not opt.use_drop: del classifier[5] del classifier[2] classifier = nn.Sequential(*classifier) # freeze top4 conv for layer in features[:10]: for p in layer.parameters(): p.requires_grad = False return nn.Sequential(*features), classifier
Example #29
Source File: vgg_fcn.py From MCD_DA with MIT License | 5 votes |
def _initialize_weights(self): vgg16 = models.vgg16(pretrained=True) self.copy_params_from_vgg16(vgg16)
Example #30
Source File: basenet.py From MCD_DA with MIT License | 5 votes |
def __init__(self): super(BaseNet, self).__init__() model_ft = models.vgg16(pretrained=True) mod = list(model_ft.features.children()) self.features = nn.Sequential(*mod) mod = list(model_ft.classifier.children()) mod.pop() self.classifier = nn.Sequential(*mod)