Python torchvision.models.resnet34() Examples

The following are 30 code examples of torchvision.models.resnet34(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torchvision.models , or try the search function .
Example #1
Source File: resnet_encoder.py    From packnet-sfm with MIT License 8 votes vote down vote up
def __init__(self, num_layers, pretrained, num_input_images=1):
        super(ResnetEncoder, self).__init__()

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])

        resnets = {18: models.resnet18,
                   34: models.resnet34,
                   50: models.resnet50,
                   101: models.resnet101,
                   152: models.resnet152}

        if num_layers not in resnets:
            raise ValueError("{} is not a valid number of resnet layers".format(num_layers))

        if num_input_images > 1:
            self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
        else:
            self.encoder = resnets[num_layers](pretrained)

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4 
Example #2
Source File: pretrained_networks.py    From PerceptualSimilarity with BSD 2-Clause "Simplified" License 6 votes vote down vote up
def __init__(self, requires_grad=False, pretrained=True, num=18):
        super(resnet, self).__init__()
        if(num==18):
            self.net = tv.resnet18(pretrained=pretrained)
        elif(num==34):
            self.net = tv.resnet34(pretrained=pretrained)
        elif(num==50):
            self.net = tv.resnet50(pretrained=pretrained)
        elif(num==101):
            self.net = tv.resnet101(pretrained=pretrained)
        elif(num==152):
            self.net = tv.resnet152(pretrained=pretrained)
        self.N_slices = 5

        self.conv1 = self.net.conv1
        self.bn1 = self.net.bn1
        self.relu = self.net.relu
        self.maxpool = self.net.maxpool
        self.layer1 = self.net.layer1
        self.layer2 = self.net.layer2
        self.layer3 = self.net.layer3
        self.layer4 = self.net.layer4 
Example #3
Source File: pretrained_networks.py    From TecoGAN with Apache License 2.0 6 votes vote down vote up
def __init__(self, requires_grad=False, pretrained=True, num=18):
        super(resnet, self).__init__()
        if(num==18):
            self.net = models.resnet18(pretrained=pretrained)
        elif(num==34):
            self.net = models.resnet34(pretrained=pretrained)
        elif(num==50):
            self.net = models.resnet50(pretrained=pretrained)
        elif(num==101):
            self.net = models.resnet101(pretrained=pretrained)
        elif(num==152):
            self.net = models.resnet152(pretrained=pretrained)
        self.N_slices = 5

        self.conv1 = self.net.conv1
        self.bn1 = self.net.bn1
        self.relu = self.net.relu
        self.maxpool = self.net.maxpool
        self.layer1 = self.net.layer1
        self.layer2 = self.net.layer2
        self.layer3 = self.net.layer3
        self.layer4 = self.net.layer4 
Example #4
Source File: resnet.py    From deeplabv3plus-pytorch with MIT License 6 votes vote down vote up
def __init__(self, layers, atrous, pretrained=True):
		super(ResNet, self).__init__()
		self.inner_layer = []
		if layers == 18:
			self.backbone = models.resnet18(pretrained=pretrained)
		elif layers == 34:
			self.backbone = models.resnet34(pretrained=pretrained)
		elif layers == 50:
			self.backbone = models.resnet50(pretrained=pretrained)
		elif layers == 101:
			self.backbone = models.resnet101(pretrained=pretrained)
		elif layers == 152:
			self.backbone = models.resnet152(pretrained=pretrained)
		else:
			raise ValueError('resnet.py: network layers is no support yet')
		
		def hook_func(module, input, output):
			self.inner_layer.append(output)

		self.backbone.layer1.register_forward_hook(hook_func)	
		self.backbone.layer2.register_forward_hook(hook_func)
		self.backbone.layer3.register_forward_hook(hook_func)
		self.backbone.layer4.register_forward_hook(hook_func) 
Example #5
Source File: frontend.py    From pase with MIT License 6 votes vote down vote up
def __init__(self, sinc_out, hidden_dim, sinc_kernel=251, sinc_stride=1, conv_stride=5, kernel_size=21, pretrained=True,name="Resnet50"):
        super().__init__(name=name)
        self.sinc = SincConv_fast(1, sinc_out, sinc_kernel,
                                  sample_rate=16000,
                                  padding='SAME',
                                  stride=sinc_stride,
                                  pad_mode='reflect'
                                  )

        self.conv1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=kernel_size, stride=conv_stride, padding= kernel_size // 2, bias=False),
                                   nn.BatchNorm2d(64),
                                   nn.ReLU(64))

        resnet = models.resnet34(pretrained=pretrained)
        self.resnet = nn.Sequential(resnet.layer1,
                                    resnet.layer2,
                                    resnet.layer3,
                                    resnet.layer4
                                    )

        self.conv2 = nn.Sequential(nn.Conv2d(512, 256, kernel_size=[2, 1], stride=1, bias=False))

        self.emb_dim = hidden_dim 
Example #6
Source File: resnet_encoder.py    From SC-SfMLearner-Release with GNU General Public License v3.0 6 votes vote down vote up
def __init__(self, num_layers, pretrained, num_input_images=1):
        super(ResnetEncoder, self).__init__()

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])

        resnets = {18: models.resnet18,
                   34: models.resnet34,
                   50: models.resnet50,
                   101: models.resnet101,
                   152: models.resnet152}

        if num_layers not in resnets:
            raise ValueError("{} is not a valid number of resnet layers".format(num_layers))

        if num_input_images > 1:
            self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
        else:
            self.encoder = resnets[num_layers](pretrained)

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4 
Example #7
Source File: imgnet.py    From 3DOD_thesis with MIT License 6 votes vote down vote up
def __init__(self, model_id, project_dir):
        super(ImgNet, self).__init__()

        self.model_id = model_id
        self.project_dir = project_dir
        self.create_model_dirs()

        resnet34 = models.resnet34()
        # load pretrained model:
        resnet34.load_state_dict(torch.load("/root/3DOD_thesis/pretrained_models/resnet/resnet34-333f7ec4.pth"))
        # remove fully connected layer:
        self.resnet34 = nn.Sequential(*list(resnet34.children())[:-2])

        self.avg_pool = nn.AvgPool2d(kernel_size=7)

        self.fc1 = nn.Linear(512, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, 2*8 + 3 + 1) 
Example #8
Source File: resnet.py    From deeplabv3 with MIT License 6 votes vote down vote up
def __init__(self, num_layers):
        super(ResNet_BasicBlock_OS16, self).__init__()

        if num_layers == 18:
            resnet = models.resnet18()
            # load pretrained model:
            resnet.load_state_dict(torch.load("/root/deeplabv3/pretrained_models/resnet/resnet18-5c106cde.pth"))
            # remove fully connected layer, avg pool and layer5:
            self.resnet = nn.Sequential(*list(resnet.children())[:-3])

            num_blocks = 2
            print ("pretrained resnet, 18")
        elif num_layers == 34:
            resnet = models.resnet34()
            # load pretrained model:
            resnet.load_state_dict(torch.load("/root/deeplabv3/pretrained_models/resnet/resnet34-333f7ec4.pth"))
            # remove fully connected layer, avg pool and layer5:
            self.resnet = nn.Sequential(*list(resnet.children())[:-3])

            num_blocks = 3
            print ("pretrained resnet, 34")
        else:
            raise Exception("num_layers must be in {18, 34}!")

        self.layer5 = make_layer(BasicBlock, in_channels=256, channels=512, num_blocks=num_blocks, stride=1, dilation=2) 
Example #9
Source File: pretrained_networks.py    From SMIT with MIT License 6 votes vote down vote up
def __init__(self, requires_grad=False, pretrained=True, num=18):
        super(resnet, self).__init__()
        if (num == 18):
            self.net = models.resnet18(pretrained=pretrained)
        elif (num == 34):
            self.net = models.resnet34(pretrained=pretrained)
        elif (num == 50):
            self.net = models.resnet50(pretrained=pretrained)
        elif (num == 101):
            self.net = models.resnet101(pretrained=pretrained)
        elif (num == 152):
            self.net = models.resnet152(pretrained=pretrained)
        self.N_slices = 5

        self.conv1 = self.net.conv1
        self.bn1 = self.net.bn1
        self.relu = self.net.relu
        self.maxpool = self.net.maxpool
        self.layer1 = self.net.layer1
        self.layer2 = self.net.layer2
        self.layer3 = self.net.layer3
        self.layer4 = self.net.layer4 
Example #10
Source File: resnet.py    From LaSO with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def resnet34_ids_pre(num_attributes, ids_embedding_size, **kwargs):
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """

    model = zoo.resnet34(pretrained=True)

    for param in model.parameters():
        param.requires_grad = False
    # Remove the last fully-connected layer
    # Parameters of newly constructed modules have requires_grad=True by default

    model = nn.Sequential(*list(model.children())[:-1])

    classifier_attr = ResNetClassifier(BasicBlock, num_classes=num_attributes, **kwargs)
    classifier_ids = ResNetClassifier(BasicBlock, num_classes=ids_embedding_size, **kwargs)

    return model, classifier_attr, classifier_ids 
Example #11
Source File: resnet_encoder.py    From DF-VO with MIT License 6 votes vote down vote up
def __init__(self, num_layers, pretrained, num_input_images=1):
        super(ResnetEncoder, self).__init__()

        self.num_ch_enc = np.array([64, 64, 128, 256, 512])

        resnets = {18: models.resnet18,
                   34: models.resnet34,
                   50: models.resnet50,
                   101: models.resnet101,
                   152: models.resnet152}

        if num_layers not in resnets:
            raise ValueError("{} is not a valid number of resnet layers".format(num_layers))

        if num_input_images > 1:
            self.encoder = resnet_multiimage_input(num_layers, pretrained, num_input_images)
        else:
            self.encoder = resnets[num_layers](pretrained)

        if num_layers > 34:
            self.num_ch_enc[1:] *= 4 
Example #12
Source File: models.py    From nni with MIT License 5 votes vote down vote up
def create_resnet(layers):
    if layers == 34:
        return resnet34(pretrained=True), 512
    elif layers == 50:
        return resnet50(pretrained=True), 2048
    elif layers == 101:
        return resnet101(pretrained=True), 2048
    elif layers == 152:
        return resnet152(pretrained=True), 2048
    else:
        raise NotImplementedError('only 34, 50, 101, 152 version of Resnet are implemented') 
Example #13
Source File: resnet.py    From MCD_DA with MIT License 5 votes vote down vote up
def __init__(self, downblock, upblock, num_layers, n_classes):
        super(ResNet, self).__init__()

        self.in_channels = 64
        resnet = models.resnet34(pretrained=True)

        self.conv1 = resnet.conv1
        self.bn1 = resnet.bn1
        self.relu = resnet.relu
        self.maxpool = resnet.maxpool

        self.dlayer1 = resnet.layer1
        self.dlayer2 = resnet.layer2
        self.dlayer3 = resnet.layer3
        self.dlayer4 = resnet.layer4

        self.uplayer1 = self._make_up_block(upblock, 512, 1, stride=2)
        self.uplayer2 = self._make_up_block(upblock, 256, num_layers[2], stride=2)
        self.uplayer3 = self._make_up_block(upblock, 128, num_layers[1], stride=2)
        self.uplayer4 = self._make_up_block(upblock, 64, 2, stride=2)

        upsample = nn.Sequential(
            nn.ConvTranspose2d(self.in_channels,  # 256
                               64,
                               kernel_size=1, stride=2,
                               bias=False, output_padding=1),
            nn.BatchNorm2d(64),
        )
        self.uplayer_top = DeconvBottleneck(self.in_channels, 64, 1, 2, upsample)

        self.conv1_1 = nn.ConvTranspose2d(64, n_classes, kernel_size=1, stride=1,
                                          bias=False) 
Example #14
Source File: model_occ.py    From Silhouette-Guided-3D with MIT License 5 votes vote down vote up
def initialize_encoder(model_name, num_classes, use_pretrained=True):
    # Initialize these variables which will be set in this if statement. Each of these
    #   variables is model specific.
    model_ft = None

    if model_name == "resnet18":
        """ Resnet18
        """
        #model_ft = models.resnet18(pretrained=use_pretrained)
        model_ft = resnet.resnet18(pretrained=use_pretrained, num_classes=1000)
        #set_parameter_requires_grad(model_ft)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)

    elif model_name == "resnet34":
        """ Resnet34
        """
        #model_ft = models.resnet34(pretrained=use_pretrained)
        model_ft = resnet.resnet34(pretrained=use_pretrained, num_classes=1000)
        #set_parameter_requires_grad(model_ft)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)

    elif model_name == "resnet50":
        """ Resnet50
        """
        #model_ft = models.resnet50(pretrained=use_pretrained)
        model_ft = resnet.resnet50(pretrained=use_pretrained, num_classes=1000)
        #set_parameter_requires_grad(model_ft)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs, num_classes)

    else:
        print("Invalid model name, exiting...")
        exit()

    return model_ft

# full model 
Example #15
Source File: pyt_common.py    From advex-uar with Apache License 2.0 5 votes vote down vote up
def get_imagenet_model(resnet_size, nb_classes):
    size_to_model = {
        18: models.resnet18,
        34: models.resnet34,
        50: models.resnet50,
        101: models.resnet101,
        152: models.resnet152
    }
    return size_to_model[resnet_size](num_classes=nb_classes) 
Example #16
Source File: model.py    From Beyond-Binary-Supervision-CVPR19 with MIT License 5 votes vote down vote up
def __init__(self,embedding_size, pretrained=True, is_norm=False):
        super(PoseModel_Resnet34, self).__init__()

        self.model = resnet34(pretrained)
        self.is_norm = is_norm

        self.embedding_size = embedding_size
        self.num_ftrs = self.model.fc.in_features
        self.model.fc = nn.Linear(self.num_ftrs, self.embedding_size)
        self.not_training = [self.model.conv1]

        self._initialize_weights() 
Example #17
Source File: linknet.py    From kaggle_carvana_segmentation with MIT License 5 votes vote down vote up
def __init__(self, num_classes, num_channels=3):
        super().__init__()
        assert num_channels == 3, "num channels not used now. to use changle first conv layer to support num channels other then 3"
        filters = [64, 128, 256, 512]
        resnet = models.resnet34(pretrained=True)

        self.firstconv = resnet.conv1
        self.firstbn = resnet.bn1
        self.firstrelu = resnet.relu
        self.firstmaxpool = resnet.maxpool
        self.encoder1 = resnet.layer1
        self.encoder2 = resnet.layer2
        self.encoder3 = resnet.layer3
        self.encoder4 = resnet.layer4

        # Decoder
        self.decoder4 = DecoderBlock(filters[3], filters[2])
        self.decoder3 = DecoderBlock(filters[2], filters[1])
        self.decoder2 = DecoderBlock(filters[1], filters[0])
        self.decoder1 = DecoderBlock(filters[0], filters[0])

        # Final Classifier
        self.finaldeconv1 = nn.ConvTranspose2d(filters[0], 32, 3, stride=2)
        self.finalrelu1 = nonlinearity(inplace=True)
        self.finalconv2 = nn.Conv2d(32, 32, 3)
        self.finalrelu2 = nonlinearity(inplace=True)
        self.finalconv3 = nn.Conv2d(32, num_classes, 2, padding=1)

    # noinspection PyCallingNonCallable 
Example #18
Source File: torchvision_models.py    From models-comparison.pytorch with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def resnet34(num_classes=1000, pretrained='imagenet'):
    """Constructs a ResNet-34 model.
    """
    model = models.resnet34(pretrained=False)
    if pretrained is not None:
        settings = pretrained_settings['resnet34'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_resnets(model)
    return model 
Example #19
Source File: gcn152.py    From segmentation-networks-benchmark with MIT License 5 votes vote down vote up
def __init__(self, num_classes, input_size, pretrained=True):
        super(GCN34, self).__init__()
        self.input_size = input_size
        self.num_classes = num_classes
        resnet = models.resnet34(pretrained)

        self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu)
        self.layer1 = nn.Sequential(resnet.maxpool, resnet.layer1)
        self.layer2 = resnet.layer2
        self.layer3 = resnet.layer3
        self.layer4 = resnet.layer4

        self.gcm1 = _GlobalConvModule(512, num_classes, (7, 7))
        self.gcm2 = _GlobalConvModule(256, num_classes, (7, 7))
        self.gcm3 = _GlobalConvModule(128, num_classes, (7, 7))
        self.gcm4 = _GlobalConvModule(64, num_classes, (7, 7))

        self.brm1 = _BoundaryRefineModule(num_classes)
        self.brm2 = _BoundaryRefineModule(num_classes)
        self.brm3 = _BoundaryRefineModule(num_classes)
        self.brm4 = _BoundaryRefineModule(num_classes)
        self.brm5 = _BoundaryRefineModule(num_classes)
        self.brm6 = _BoundaryRefineModule(num_classes)
        self.brm7 = _BoundaryRefineModule(num_classes)
        self.brm8 = _BoundaryRefineModule(num_classes)
        self.brm9 = _BoundaryRefineModule(num_classes)

        initialize_weights(self.gcm1, self.gcm2, self.gcm3, self.gcm4, self.brm1, self.brm2, self.brm3,
                           self.brm4, self.brm5, self.brm6, self.brm7, self.brm8, self.brm9) 
Example #20
Source File: linknet.py    From segmentation-networks-benchmark with MIT License 5 votes vote down vote up
def __init__(self, num_classes=1, num_channels=3, pretrained=True):
        super().__init__()
        assert num_channels == 3
        self.num_classes = num_classes
        filters = [64, 128, 256, 512]
        resnet = models.resnet34(pretrained=pretrained)

        self.firstconv = resnet.conv1
        self.firstbn = resnet.bn1
        self.firstrelu = resnet.relu
        self.firstmaxpool = resnet.maxpool
        self.encoder1 = resnet.layer1
        self.encoder2 = resnet.layer2
        self.encoder3 = resnet.layer3
        self.encoder4 = resnet.layer4

        # Decoder
        self.decoder4 = DecoderBlockLinkNet(filters[3], filters[2])
        self.decoder3 = DecoderBlockLinkNet(filters[2], filters[1])
        self.decoder2 = DecoderBlockLinkNet(filters[1], filters[0])
        self.decoder1 = DecoderBlockLinkNet(filters[0], filters[0])

        # Final Classifier
        self.finaldrop1 = nn.Dropout2d(p=0.5)
        self.finaldeconv1 = nn.ConvTranspose2d(filters[0], 32, 3, stride=2)
        self.finalrelu1 = nn.LeakyReLU(inplace=True)
        self.finalconv2 = nn.Conv2d(32, 32, 3)
        self.finalrelu2 = nn.LeakyReLU(inplace=True)
        self.finalconv3 = nn.Conv2d(32, num_classes, 2, padding=1)

    # noinspection PyCallingNonCallable 
Example #21
Source File: utils_test.py    From pytorch-dp with Apache License 2.0 5 votes vote down vote up
def test_run_resnet34(self):
        imgSize = (3, 224, 224)
        # should throw because privacy engine does not work with batch norm
        # remove the next two lines when we support batch norm
        with self.assertRaises(Exception):
            self.runOneBatch(models.resnet34(), imgSize)
        self.runOneBatch(
            utils.convert_batchnorm_modules(models.resnet34()), imgSize) 
Example #22
Source File: conv.py    From occupancy_networks with MIT License 5 votes vote down vote up
def __init__(self, c_dim, normalize=True, use_linear=True):
        super().__init__()
        self.normalize = normalize
        self.use_linear = use_linear
        self.features = models.resnet34(pretrained=True)
        self.features.fc = nn.Sequential()
        if use_linear:
            self.fc = nn.Linear(512, c_dim)
        elif c_dim == 512:
            self.fc = nn.Sequential()
        else:
            raise ValueError('c_dim must be 512 if use_linear is False') 
Example #23
Source File: archs.py    From pytorch-adacos with MIT License 5 votes vote down vote up
def __init__(self, args):
        super().__init__()

        if args.backbone == 'resnet18':
            self.backbone = models.resnet18(pretrained=True)
            last_channels = 512
        elif args.backbone == 'resnet34':
            self.backbone = models.resnet34(pretrained=True)
            last_channels = 512
        elif args.backbone == 'resnet50':
            self.backbone = models.resnet50(pretrained=True)
            last_channels = 2048
        elif args.backbone == 'resnet101':
            self.backbone = models.resnet101(pretrained=True)
            last_channels = 2048
        elif args.backbone == 'resnet152':
            self.backbone = models.resnet152(pretrained=True)
            last_channels = 2048

        self.features = nn.Sequential(
            self.backbone.conv1,
            self.backbone.bn1,
            self.backbone.relu,
            self.backbone.layer1,
            self.backbone.layer2,
            self.backbone.layer3,
            self.backbone.layer4)

        self.bn1 = nn.BatchNorm2d(last_channels)
        self.dropout = nn.Dropout2d(0.5)
        self.fc = nn.Linear(8*8*last_channels, args.num_features)
        self.bn2 = nn.BatchNorm1d(args.num_features) 
Example #24
Source File: encoder.py    From pytorch-segmentation with MIT License 5 votes vote down vote up
def resnet(name, pretrained=False):
    def get_channels(layer):
        block = layer[-1]
        if isinstance(block, models.resnet.BasicBlock):
            return block.conv2.out_channels
        elif isinstance(block, models.resnet.Bottleneck):
            return block.conv3.out_channels
        raise RuntimeError("unknown resnet block: {}".format(block))

    if name == 'resnet18':
        resnet = models.resnet18(pretrained=pretrained)
    elif name == 'resnet34':
        resnet = models.resnet34(pretrained=pretrained)
    elif name == 'resnet50':
        resnet = models.resnet50(pretrained=pretrained)
    elif name == 'resnet101':
        resnet = models.resnet101(pretrained=pretrained)
    elif name == 'resnet152':
        resnet = models.resnet152(pretrained=pretrained)
    else:
        return NotImplemented

    layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool)
    layer0.out_channels = resnet.bn1.num_features
    resnet.layer1.out_channels = get_channels(resnet.layer1)
    resnet.layer2.out_channels = get_channels(resnet.layer2)
    resnet.layer3.out_channels = get_channels(resnet.layer3)
    resnet.layer4.out_channels = get_channels(resnet.layer4)
    return [layer0, resnet.layer1, resnet.layer2, resnet.layer3, resnet.layer4] 
Example #25
Source File: resnet_qc.py    From AD-DL with MIT License 5 votes vote down vote up
def resnet_qc_34(pretrained=False, **kwargs):
    """Constructs a ResNet-34 model.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = ResNetQC(BasicBlock, [3, 4, 6, 3], **kwargs)
    if pretrained:
        # load basic Resnet model
        model_ft = models.resnet34(pretrained=True)
        model.load_from_std(model_ft)
    return model 
Example #26
Source File: model.py    From kaggle-airbus-ship-detection-challenge with Apache License 2.0 5 votes vote down vote up
def __init__(self):
        super().__init__()

        resnet34 = models.resnet34(pretrained=True)

        self.resnet34_main = nn.Sequential(
            resnet34.conv1,
            resnet34.bn1,
            resnet34.relu,
            resnet34.maxpool,
            resnet34.layer1,
            resnet34.layer2,
            resnet34.layer3
        )

        self.conv_ex1 = resnet34.layer4

        self.conv_ex2 = nn.Sequential(nn.Conv2d(512, 256, kernel_size=1, padding=0, stride=1),
                                      nn.ReLU(inplace=True),
                                      nn.Conv2d(256, 512, kernel_size=3, padding=1, stride=2),
                                      nn.ReLU(inplace=True)
                                      )

        self.conv_ex3 = nn.Sequential(nn.Conv2d(512, 128, kernel_size=1, padding=0, stride=1),
                                      nn.ReLU(inplace=True),
                                      nn.Conv2d(128, 256, kernel_size=3, padding=1, stride=2),
                                      nn.ReLU(inplace=True)
                                      )

        self.ex0_intermediate = nn.Conv2d(256, 24, kernel_size=3, padding=1, stride=1)
        self.ex1_intermediate = nn.Conv2d(512, 24, kernel_size=3, padding=1, stride=1)
        self.ex2_intermediate = nn.Conv2d(512, 24, kernel_size=3, padding=1, stride=1)
        self.ex3_intermediate = nn.Conv2d(256, 24, kernel_size=3, padding=1, stride=1) 
Example #27
Source File: backbone.py    From transferlearning with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNet34Fc, self).__init__()
        model_resnet34 = models.resnet34(pretrained=True)
        self.conv1 = model_resnet34.conv1
        self.bn1 = model_resnet34.bn1
        self.relu = model_resnet34.relu
        self.maxpool = model_resnet34.maxpool
        self.layer1 = model_resnet34.layer1
        self.layer2 = model_resnet34.layer2
        self.layer3 = model_resnet34.layer3
        self.layer4 = model_resnet34.layer4
        self.avgpool = model_resnet34.avgpool 
Example #28
Source File: backbone.py    From transferlearning with MIT License 5 votes vote down vote up
def __init__(self):
        super(ResNet34Fc, self).__init__()
        model_resnet34 = models.resnet34(pretrained=True)
        self.conv1 = model_resnet34.conv1
        self.bn1 = model_resnet34.bn1
        self.relu = model_resnet34.relu
        self.maxpool = model_resnet34.maxpool
        self.layer1 = model_resnet34.layer1
        self.layer2 = model_resnet34.layer2
        self.layer3 = model_resnet34.layer3
        self.layer4 = model_resnet34.layer4
        self.avgpool = model_resnet34.avgpool
        self.__in_features = model_resnet34.fc.in_features 
Example #29
Source File: torchvision_models.py    From pretorched-x with MIT License 5 votes vote down vote up
def resnet34(num_classes=1000, pretrained='imagenet'):
    """Constructs a ResNet-34 model.
    """
    model = models.resnet34(pretrained=False, num_classes=num_classes)
    if pretrained is not None:
        settings = pretrained_settings['resnet34'][pretrained]
        model = load_pretrained(model, num_classes, settings)
    model = modify_resnets(model)
    return model 
Example #30
Source File: models_classy_model_test.py    From ClassyVision with MIT License 5 votes vote down vote up
def test_train_step(self):
        # test that the model can be run in a train step
        model = models.resnet34(pretrained=False)
        classy_model = ClassyModel.from_model(model)

        config = get_fast_test_task_config()
        task = build_task(config)
        task.set_model(classy_model)
        trainer = LocalTrainer()
        trainer.train(task)