Python torchvision.models.__dict__() Examples
The following are 30
code examples of torchvision.models.__dict__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision.models
, or try the search function
.
Example #1
Source File: model.py From VSE-C with MIT License | 6 votes |
def get_cnn(self, arch, pretrained): """Load a pretrained CNN and parallelize over GPUs """ if pretrained: print(("=> using pre-trained model '{}'".format(arch))) model = models.__dict__[arch](pretrained=True) else: print(("=> creating model '{}'".format(arch))) model = models.__dict__[arch]() if arch.startswith('alexnet') or arch.startswith('vgg'): model.features = nn.DataParallel(model.features) model.cuda() else: model = nn.DataParallel(model).cuda() return model
Example #2
Source File: utils.py From actor-observer with GNU General Public License v3.0 | 6 votes |
def generic_load(arch, pretrained, weights, args): if arch in tmodels.__dict__: # torchvision models if pretrained: print("=> using pre-trained model '{}'".format(arch)) model = tmodels.__dict__[arch](pretrained=True) model = model.cuda() else: print("=> creating model '{}'".format(arch)) model = tmodels.__dict__[arch]() else: # defined as script in this directory model = importlib.import_module('.' + arch, package='models') model = model.__dict__[arch](args) if not weights == '': print('loading pretrained-weights from {}'.format(weights)) chkpoint = torch.load(weights) if isinstance(chkpoint, dict) and 'state_dict' in chkpoint: chkpoint = chkpoint['state_dict'] load_partial_state(model, chkpoint) return model
Example #3
Source File: main.py From elastic with BSD 3-Clause "New" or "Revised" License | 6 votes |
def initialize_model( arch: str, lr: float, momentum: float, weight_decay: float, device_id: int ): print(f"=> creating model: {arch}") model = models.__dict__[arch]() # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. model.cuda(device_id) cudnn.benchmark = True model = DistributedDataParallel(model, device_ids=[device_id]) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(device_id) optimizer = SGD( model.parameters(), lr, momentum=momentum, weight_decay=weight_decay ) return model, criterion, optimizer
Example #4
Source File: imagenet.py From pytorch-lightning with Apache License 2.0 | 6 votes |
def __init__(self, arch, pretrained, lr: float, momentum: float, weight_decay: int, data_path: str, batch_size: int, **kwargs): """ TODO: add docstring here """ super().__init__() self.arch = arch self.pretrained = pretrained self.lr = lr self.momentum = momentum self.weight_decay = weight_decay self.data_path = data_path self.batch_size = batch_size self.model = models.__dict__[self.arch](pretrained=self.pretrained)
Example #5
Source File: imagenet_models.py From imagenet with BSD 3-Clause "New" or "Revised" License | 6 votes |
def build_model(self): # Create model from scratch or use a pretrained one print("=> using model '{}'".format(self._arch)) self._model = models.__dict__[self._arch](num_classes=len(self._labels)) print("=> loading checkpoint '{}'".format(self._ckp)) if self._cuda: checkpoint = torch.load(self._ckp) else: # Load GPU model on CPU checkpoint = torch.load(self._ckp, map_location=lambda storage, loc: storage) # Load weights self._model.load_state_dict(checkpoint['state_dict']) if self._cuda: self._model.cuda() else: self._model.cpu() # Preprocess Images to be ImageNet-compliant
Example #6
Source File: test_model_CAM.py From moments_models with BSD 2-Clause "Simplified" License | 6 votes |
def load_model(modelID, categories): if modelID == 1: model_name = 'resnet50_imagenetpretrained_moments' weight_file = 'moments_RGB_resnet50_imagenetpretrained.pth.tar' if not os.access(weight_file, os.W_OK): weight_url = 'http://moments.csail.mit.edu/moments_models/' + weight_file os.system('wget ' + weight_url) model = models.__dict__['resnet50'](num_classes=len(categories)) useGPU = 0 if useGPU == 1: checkpoint = torch.load(weight_file) else: checkpoint = torch.load(weight_file, map_location=lambda storage, loc: storage) # allow cpu state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()} model.load_state_dict(state_dict) model.eval() # hook the feature extractor features_names = ['layer4','avgpool'] # this is the last conv layer of the resnet for name in features_names: model._modules.get(name).register_forward_hook(hook_feature) return model
Example #7
Source File: model.py From vsepp with Apache License 2.0 | 6 votes |
def get_cnn(self, arch, pretrained): """Load a pretrained CNN and parallelize over GPUs """ if pretrained: print("=> using pre-trained model '{}'".format(arch)) model = models.__dict__[arch](pretrained=True) else: print("=> creating model '{}'".format(arch)) model = models.__dict__[arch]() if arch.startswith('alexnet') or arch.startswith('vgg'): model.features = nn.DataParallel(model.features) model.cuda() else: model = nn.DataParallel(model).cuda() return model
Example #8
Source File: extractor.py From MMdnn with MIT License | 6 votes |
def download(cls, architecture, path="./"): if cls.sanity_check(architecture): architecture_file = path + "imagenet_{}.pth".format(architecture) if not os.path.exists(architecture_file): kwargs = {} if architecture == 'inception_v3': kwargs['transform_input'] = False model = models.__dict__[architecture](pretrained=True, **kwargs) torch.save(model, architecture_file) print("PyTorch pretrained model is saved as [{}].".format(architecture_file)) else: print("File [{}] existed!".format(architecture_file)) return architecture_file else: return None
Example #9
Source File: test_model.py From moments_models with BSD 2-Clause "Simplified" License | 6 votes |
def load_model(modelID, categories): if modelID == 1: weight_file = 'moments_RGB_resnet50_imagenetpretrained.pth.tar' if not os.access(weight_file, os.W_OK): weight_url = 'http://moments.csail.mit.edu/moments_models/' + weight_file os.system('wget ' + weight_url) model = models.__dict__['resnet50'](num_classes=len(categories)) useGPU = 0 if useGPU == 1: checkpoint = torch.load(weight_file) else: checkpoint = torch.load(weight_file, map_location=lambda storage, loc: storage) # allow cpu state_dict = {str.replace(str(k), 'module.', ''): v for k, v in checkpoint['state_dict'].items()} model.load_state_dict(state_dict) model.eval() return model
Example #10
Source File: test.py From coord-conv-pytorch with GNU General Public License v3.0 | 6 votes |
def test_coordConvNet(input_image): print('- CoordConvNet') device = input_image.device import torchvision.models as models vgg16 = models.__dict__['vgg16'](pretrained=False) print('VGG16 :\n', vgg16) vgg16 = CoordConvNet(vgg16, with_r=True) print('CoordVGG16 :\n', vgg16) vgg16 = vgg16.to(device) output = vgg16(input_image) print('Input Size : ', input_image.size()) print('Output Size : ', [i.size() for i in output]) print('- CoordConvNet: OK!')
Example #11
Source File: main.py From smooth-topk with MIT License | 6 votes |
def get_model(args): parse_model(args) if args.dataset == 'imagenet': model = torch_models.__dict__[args.model]() args.model_name = args.model elif args.basic_model: model = cifar_models.BasicConvNet(args.dataset, args.planes) args.model_name = 'convnet_{}'.format(args.planes) else: model = cifar_models.DenseNet3(args.depth, args.num_classes, args.growth) args.model_name = 'densenet_{}_{}'.format(args.depth, args.growth) # Print the number of model parameters nparams = sum([p.data.nelement() for p in model.parameters()]) print('Number of model parameters: \t {}'.format(nparams)) return model
Example #12
Source File: model.py From CAMP_iccv19 with Apache License 2.0 | 6 votes |
def get_cnn(self, arch, pretrained, fusion): """Load a pretrained CNN and parallelize over GPUs """ if arch == "resnet152": if pretrained: print("=> using pre-trained model '{}'".format(arch)) model = resnet152(pretrained=True, fusion=fusion) else: print("=> creating model '{}'".format(arch)) model = resnet152(pretrained=False, fusion=fusion) else: if pretrained: print("=> using pre-trained model '{}'".format(arch)) model = models.__dict__[arch](pretrained=True) else: print("=> creating model '{}'".format(arch)) model = models.__dict__[arch]() return model
Example #13
Source File: cpu_convnet_benchmark.py From benchmark with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setupRun(self, state, arg): arch, sizes = arg[("arch", "size")] batch_size, c, h, w = sizes[0], sizes[1], sizes[2], sizes[3] batch_size = 1 if arg.single_batch_size else batch_size data_ = torch.randn(batch_size, c, h, w) target_ = torch.arange(1, batch_size + 1).long() state.net = models.__dict__[ arch ]() # no need to load pre-trained weights for dummy data state.optimizer = optim.SGD(state.net.parameters(), lr=0.01) state.criterion = nn.CrossEntropyLoss() state.net.eval() state.data, state.target = Variable(data_), Variable(target_) state.steps = 0 state.time_fwd = 0 state.time_bwd = 0 state.time_upt = 0
Example #14
Source File: main.py From PyTorch with MIT License | 5 votes |
def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__)
Example #15
Source File: arch.py From reseg-pytorch with GNU General Public License v3.0 | 5 votes |
def __init__(self, usegpu=True): super(CNN, self).__init__() self.model = models.__dict__['vgg16'](pretrained=True) self.model = nn.Sequential(*list(self.model.children())[0]) #TODO resnet50 :-5 self.model = nn.Sequential(*list(self.model.children())[:16])
Example #16
Source File: dataparallel.py From pytorch-distributed with MIT License | 5 votes |
def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__)
Example #17
Source File: model.py From 3DKeypoints-DA with GNU General Public License v3.0 | 5 votes |
def getModel(args): # create model if args.pretrained: print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) if args.arch.startswith('resnet'): if '18' in args.arch: model.fc = nn.Linear(512 * 1, ref.J * 3) else : model.fc = nn.Linear(512 * 4, ref.J * 3) print 'reset classifier' if args.arch.startswith('densenet'): if '161' in args.arch: model.classifier = nn.Linear(2208, ref.J * 3) elif '201' in args.arch: model.classifier = nn.Linear(1920, ref.J * 3) else: model.classifier = nn.Linear(1024, ref.J * 3) if args.arch.startswith('alex'): feature_model = list(model.classifier.children()) feature_model.pop() feature_model.append(nn.Linear(4096, ref.J * 3)) model.classifier = nn.Sequential(*feature_model) else: print("=> creating model '{}'".format(args.arch)) model = models.__dict__[args.arch](num_classes = ref.J * 3) model = torch.nn.DataParallel(model).cuda() if args.loadModel: if os.path.isfile(args.loadModel): print("=> loading model '{}'".format(args.loadModel)) checkpoint = torch.load(args.loadModel) model.load_state_dict(checkpoint['state_dict']) else: raise Exception("=> no model found at '{}'".format(args.loadModel)) return model
Example #18
Source File: ImageModels.py From DAVEnet-pytorch with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, embedding_dim=1024, pretrained=False): super(VGG16, self).__init__() seed_model = imagemodels.__dict__['vgg16'](pretrained=pretrained).features seed_model = nn.Sequential(*list(seed_model.children())[:-1]) # remove final maxpool last_layer_index = len(list(seed_model.children())) seed_model.add_module(str(last_layer_index), nn.Conv2d(512, embedding_dim, kernel_size=(3,3), stride=(1,1), padding=(1,1))) self.image_model = seed_model
Example #19
Source File: main.py From elastic with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__)
Example #20
Source File: main.py From online-normalization with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__)
Example #21
Source File: resnet.py From Dense-CoAttention-Network with MIT License | 5 votes |
def __init__(self, name, is_freeze=True): assert name in ["resnet50", "resnet101", "resnet152"], "Invalid CNN type: {:s}".format(name) super(ResNet, self).__init__() self.model = models.__dict__[name](pretrained=True) delattr(self.model, "fc") delattr(self.model, "avgpool") if is_freeze: print("Freezing %s ..." % name) for param in self.model.parameters(): param.requires_grad_(requires_grad=False)
Example #22
Source File: drnet.py From SpatialSense with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, phrase_encoder, feature_dim, num_layers=3, backbone='resnet18'): super(DRNet, self).__init__() self.phrase_encoder = phrase_encoder self.num_layers = num_layers self.appr_module = models.__dict__[backbone](pretrained=True) self.appr_module.fc = nn.Linear(512, 256) self.pos_module = nn.Sequential(OrderedDict([ ('conv1_p', nn.Conv2d(2, 32, 5, 2, 2)), ('batchnorm1_p', nn.BatchNorm2d(32)), ('relu1_p', nn.ReLU()), ('conv2_p', nn.Conv2d(32, 64, 3, 1, 1)), ('batchnorm2_p', nn.BatchNorm2d(64)), ('relu2_p', nn.ReLU()), ('maxpool2_p', nn.MaxPool2d(2)), ('hg', Hourglass(8, 64)), ('batchnorm_p', nn.BatchNorm2d(64)), ('relu_p', nn.ReLU()), ('maxpool_p', nn.MaxPool2d(2)), ('conv3_p', nn.Conv2d(64, 256, 4)), ('batchnorm3_p', nn.BatchNorm2d(256)), ])) self.PhiR_0 = nn.Linear(512, feature_dim) self.batchnorm = nn.BatchNorm1d(feature_dim) self.PhiA = nn.Linear(300, feature_dim) self.PhiB = nn.Linear(300, feature_dim) self.PhiR = nn.Linear(feature_dim, feature_dim) self.fc = nn.Linear(feature_dim, 9)
Example #23
Source File: vtranse.py From SpatialSense with BSD 2-Clause "Simplified" License | 5 votes |
def __init__(self, phrase_encoder, visual_feature_size, predicate_embedding_dim, backbone='resnet18'): super(VtransE, self).__init__() self.visual_feature_size = visual_feature_size self.phrase_encoder = phrase_encoder self.backbone = models.__dict__[backbone](pretrained=True) self.backbone = nn.Sequential(self.backbone.conv1, self.backbone.bn1, self.backbone.relu, self.backbone.maxpool, self.backbone.layer1, self.backbone.layer2, self.backbone.layer3, self.backbone.layer4) self.scale_factor = nn.Parameter(torch.Tensor(3)) nn.init.uniform_(self.scale_factor) self.linear1 = nn.Linear(visual_feature_size * visual_feature_size * 512, visual_feature_size * visual_feature_size * 64) self.batchnorm1 = nn.BatchNorm1d(visual_feature_size * visual_feature_size * 64) self.linear2 = nn.Linear(visual_feature_size * visual_feature_size * 512, visual_feature_size * visual_feature_size * 64) self.batchnorm2 = nn.BatchNorm1d(visual_feature_size * visual_feature_size * 64) feature_dim = 300 + 4 + visual_feature_size * visual_feature_size * 64 self.W_o = nn.Linear(feature_dim, predicate_embedding_dim) self.W_s = nn.Linear(feature_dim, predicate_embedding_dim) self.W_p = nn.Linear(predicate_embedding_dim, 9)
Example #24
Source File: utils.py From PyVideoResearch with GNU General Public License v3.0 | 5 votes |
def generic_load(arch, pretrained, weights, args): if arch in tmodels.__dict__: # torchvision models if pretrained: print("=> using pre-trained model '{}'".format(arch)) model = tmodels.__dict__[arch](pretrained=True) model = model.cuda() else: print("=> creating model '{}'".format(arch)) model = tmodels.__dict__[arch]() else: # defined as script in bases model = case_getattr(import_module('models.bases.' + arch), arch).get(args) if not weights == '': print('loading pretrained-weights from {}'.format(weights)) model.load_state_dict(torch.load(weights)) return model
Example #25
Source File: Resnet_ins101.py From RANet with Apache License 2.0 | 5 votes |
def get_imagenet_model(type, pretrained=True): if type == 'vgg16': return models.__dict__['vgg16'](pretrained=pretrained) if type == 'resnet50': return models.__dict__['resnet50'](pretrained=pretrained) if type == 'resnet101': return models.__dict__['resnet101'](pretrained=pretrained) if type == 'resnet_ins101': return models.__dict__['resnet_ins101'](pretrained=pretrained) if type == 'resnet_ins_RGBM101': return models.__dict__['resnet_ins_RGBM101'](pretrained=pretrained) else: print('avilible types: ') print(model_names) assert 'error model type'
Example #26
Source File: RANet_Model_imagenet.py From RANet with Apache License 2.0 | 5 votes |
def get_imagenet_model(type, pretrained=True): if type == 'resnet101': return models.__dict__['resnet101'](pretrained=pretrained) if type == 'resnet_ins101': return resnet_ins101(pretrained=pretrained) else: print('avilible types: ') print(model_names) assert 'error model type'
Example #27
Source File: models.py From moments_models with BSD 2-Clause "Simplified" License | 5 votes |
def resnet50(num_classes=339, pretrained=True): model = models.__dict__['resnet50'](num_classes=num_classes) if pretrained: model.load_state_dict(load_checkpoint(weights['resnet50'])) model = modify_resnets(model) return model
Example #28
Source File: main.py From Teacher-free-Knowledge-Distillation with MIT License | 5 votes |
def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__)
Example #29
Source File: feature_extractor.py From imsearch with Apache License 2.0 | 5 votes |
def get_extractor(arch='resnet50'): model_ft = models.__dict__[arch](pretrained=True) extractor = nn.Sequential(*list(model_ft.children())[:-1]) return extractor
Example #30
Source File: teaser.py From ignite with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_model(name): if name in models.__dict__: fn = models.__dict__[name] else: raise RuntimeError("Unknown model name {}".format(name)) return fn(num_classes=10)