Python keras.backend.tensorflow_backend.set_session() Examples
The following are 6
code examples of keras.backend.tensorflow_backend.set_session().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.backend.tensorflow_backend
, or try the search function
.
Example #1
Source File: model.py From EasyPR-python with Apache License 2.0 | 6 votes |
def __init__(self, mode, config, model_dir): """ mode: Either "training" or "inference" config: A Sub-class of the Config class model_dir: Directory to save training logs and trained weights """ assert mode in ['training', 'inference'] if mode == 'training': import keras.backend.tensorflow_backend as KTF config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) KTF.set_session(session) self.mode = mode self.config = config self.model_dir = model_dir self.set_log_dir() self.keras_model = self.build(mode=mode, config=config)
Example #2
Source File: plate_detect.py From EasyPR-python with Apache License 2.0 | 6 votes |
def detect(self, src, model_dir): first = self.eval_sess is None if first: # if first load config = tf.ConfigProto() config.gpu_options.allow_growth = True self.eval_sess = tf.Session(graph=self.graph, config=config) with self.graph.as_default(): if first: plate_config = PlateInferenceConfig() # plate_config.display() self.model = modellib.MaskRCNN(mode="inference", config=plate_config, model_dir=model_dir) KTF.set_session(self.eval_sess) model_path = self.model.find_last()[1] self.model.load_weights(model_path, by_name=True) result = self.model.detect([src]) return self._post_process(result, src)
Example #3
Source File: main.py From evo-pawness with GNU General Public License v3.0 | 5 votes |
def main_alpha_zero_train(): """ Main option to train the alpha zero model from start :return: """ import tensorflow as tf from keras.backend.tensorflow_backend import set_session from reinforcement_learning_train.alpha_zero.train_module import fit_train from reinforcement_learning_train.util.action_encoder import ActionEncoder from reinforcement_learning_train.alpha_zero.deep_net_architecture import PawnNet, PawnNetZero from reinforcement_learning_train.util.alphazero_util import action_spaces_new from collections import deque # config = tf.ConfigProto() # config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU # config.log_device_placement = True # to log device placement (on which device the operation ran) # # (nothing gets printed in Jupyter, only if you run it standalone) # sess = tf.Session(config=config) # set_session(sess) # set this TensorFlow session as the default session for Keras all_action_spaces = action_spaces_new() deepnet_model = PawnNetZero(len(all_action_spaces)) global_list_training = deque(maxlen=9000) ae = ActionEncoder() ae.fit(list_all_action=all_action_spaces) print(deepnet_model.model.summary()) fit_train(global_list_training,ae, deepnet_model) deepnet_model.model.save("best_model.hdf5")
Example #4
Source File: main.py From evo-pawness with GNU General Public License v3.0 | 5 votes |
def main_alpha_zero_train_continue(): """ Main option to play to continue training the model of alpha zero :return: """ from collections import deque from keras.models import load_model from reinforcement_learning_train.alpha_zero.train_module import fit_train from reinforcement_learning_train.util.action_encoder import ActionEncoder from reinforcement_learning_train.alpha_zero.deep_net_architecture import PawnNet, PawnNetZero from reinforcement_learning_train.util.alphazero_util import action_spaces_new import pickle # config = tf.ConfigProto() # config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU # config.log_device_placement = True # to log device placement (on which device the operation ran) # # (nothing gets printed in Jupyter, only if you run it standalone) # sess = tf.Session(config=config) # set_session(sess) # set this TensorFlow session as the default session for Keras all_action_spaces = action_spaces_new() MODEL_PATH = "checkpoint.hdf5" BEST_MODEL = "best_model.hdf5" GLOBAL_LIST_TRAINING_PATH = "global_list_training.p" # Import Model deepnet_model = PawnNetZero(len(all_action_spaces)) deepnet_model.model = load_model(MODEL_PATH) best_model = load_model(BEST_MODEL) global_list_training = pickle.load(open(GLOBAL_LIST_TRAINING_PATH, "rb")) print("GLOBAL LIST SHAPE : {}".format(len(global_list_training))) ae = ActionEncoder() ae.fit(list_all_action=all_action_spaces) fit_train(global_list_training, ae, deepnet_model, best_model=best_model)
Example #5
Source File: trainer.py From Carla-RL with MIT License | 5 votes |
def check_weights_size(model_path, weights_size): # Memory fraction gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=settings.TRAINER_MEMORY_FRACTION) backend.set_session(tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))) # create a model and save serialized weights' size trainer = ARTDQNTrainer(model_path) weights_size.value = len(trainer.serialize_weights()) # Runs trainer process
Example #6
Source File: pred.py From SRCNNKit with MIT License | 5 votes |
def setup_session(): import tensorflow as tf from keras.backend import tensorflow_backend config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True)) session = tf.Session(config=config) tensorflow_backend.set_session(session)