Python dask.array.from_array() Examples
The following are 30
code examples of dask.array.from_array().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
dask.array
, or try the search function
.
Example #1
Source File: test_statstest.py From alibi-detect with Apache License 2.0 | 6 votes |
def test_permutation(permutation_params): n_features, n_instances, n_permutations, mult = permutation_params xshape, yshape = (n_instances[0], n_features), (n_instances[1], n_features) np.random.seed(0) x = np.random.random(xshape).astype('float32') y = np.random.random(yshape).astype('float32') * mult xda = da.from_array(x, chunks=xshape) yda = da.from_array(y, chunks=yshape) kwargs = {'sigma': np.array([1.])} p_val = permutation_test(x, y, n_permutations=n_permutations, metric=maximum_mean_discrepancy, **kwargs) p_val_da = permutation_test(xda, yda, n_permutations=n_permutations, metric=maximum_mean_discrepancy, **kwargs) if mult == 1: assert p_val > .2 and p_val_da > .2 elif mult > 1: assert p_val <= .2 and p_val_da <= .2
Example #2
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_intensity_peaks_dask(self): numpy_array = np.zeros((10, 10, 50, 50)) numpy_array[:, :, 27, 27] = 1 peak_array = np.zeros( (numpy_array.shape[0], numpy_array.shape[1]), dtype=np.object ) for index in np.ndindex(numpy_array.shape[:-2]): islice = np.s_[index] peak_array[islice] = np.asarray([(27, 27)]) dask_array = da.from_array(numpy_array, chunks=(5, 5, 5, 5)) dask_peak_array = da.from_array(peak_array, chunks=(5, 5)) disk_r = 2 intensity_array = dt._intensity_peaks_image(dask_array, dask_peak_array, disk_r) intensity_array_computed = intensity_array.compute() assert intensity_array_computed.shape == peak_array.shape
Example #3
Source File: dask_test_data.py From pyxem with GNU General Public License v3.0 | 6 votes |
def _get_dead_pixel_test_data_3d(): """Get artifical 3D dataset with dead pixels. Values are 50, except [:, 14, 42] and [:, 2, 12] being 0 (to represent a "dead pixel"). Examples -------- >>> import pyxem.dummy_data.dask_test_data as dtd >>> data = dtd._get_dead_pixel_test_data_3d() """ data = np.ones((5, 40, 50)) * 50 data[:, 14, 42] = 0 data[:, 2, 12] = 0 dask_array = da.from_array(data, chunks=(5, 5, 5)) return dask_array
Example #4
Source File: dask_test_data.py From pyxem with GNU General Public License v3.0 | 6 votes |
def _get_dead_pixel_test_data_2d(): """Get artifical 2D dataset with dead pixels. Values are 50, except [14, 42] and [2, 12] being 0 (to represent a "dead pixel"). Examples -------- >>> import pyxem.dummy_data.dask_test_data as dtd >>> data = dtd._get_dead_pixel_test_data_2d() """ data = np.ones((40, 50)) * 50 data[14, 42] = 0 data[2, 12] = 0 dask_array = da.from_array(data, chunks=(5, 5)) return dask_array
Example #5
Source File: dask_test_data.py From pyxem with GNU General Public License v3.0 | 6 votes |
def _get_hot_pixel_test_data_4d(): """Get artifical 4D dataset with hot pixels. Values are 50, except [4, 2, 21, 11] and [6, 1, 5, 38] being 50000 (to represent a "hot pixel"). Examples -------- >>> import pyxem.dummy_data.dask_test_data as dtd >>> data = dtd._get_hot_pixel_test_data_4d() """ data = np.ones((10, 5, 40, 50)) * 50 data[4, 2, 21, 11] = 50000 data[6, 1, 5, 38] = 50000 dask_array = da.from_array(data, chunks=(5, 5, 5, 5)) return dask_array
Example #6
Source File: dask_test_data.py From pyxem with GNU General Public License v3.0 | 6 votes |
def _get_hot_pixel_test_data_3d(): """Get artifical 3D dataset with hot pixels. Values are 50, except [2, 21, 11] and [1, 5, 38] being 50000 (to represent a "hot pixel"). Examples -------- >>> import pyxem.dummy_data.dask_test_data as dtd >>> data = dtd._get_hot_pixel_test_data_3d() """ data = np.ones((5, 40, 50)) * 50 data[2, 21, 11] = 50000 data[1, 5, 38] = 50000 dask_array = da.from_array(data, chunks=(5, 5, 5)) return dask_array
Example #7
Source File: dask_test_data.py From pyxem with GNU General Public License v3.0 | 6 votes |
def _get_hot_pixel_test_data_2d(): """Get artifical 2D dataset with hot pixels. Values are 50, except [21, 11] and [5, 38] being 50000 (to represent a "hot pixel"). Examples -------- >>> import pyxem.dummy_data.dask_test_data as dtd >>> data = dtd._get_hot_pixel_test_data_2d() """ data = np.ones((40, 50)) * 50 data[21, 11] = 50000 data[5, 38] = 50000 dask_array = da.from_array(data, chunks=(5, 5)) return dask_array
Example #8
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_intensity_peaks_chunk(self): numpy_array = np.zeros((2, 2, 50, 50)) numpy_array[:, :, 27, 27] = 1 peak_array = np.zeros( (numpy_array.shape[0], numpy_array.shape[1]), dtype=np.object ) for index in np.ndindex(numpy_array.shape[:-2]): islice = np.s_[index] peak_array[islice] = np.asarray([(27, 27)]) dask_array = da.from_array(numpy_array, chunks=(1, 1, 25, 25)) peak_array_dask = da.from_array(peak_array, chunks=(1, 1)) disk_r = 2 intensity_array = dt._intensity_peaks_image_chunk( dask_array, peak_array_dask, disk_r ) assert intensity_array.shape == peak_array_dask.shape
Example #9
Source File: test_distance.py From alibi-detect with Apache License 2.0 | 6 votes |
def test_mmd(mmd_params): n_features, n_instances = mmd_params xshape, yshape = (n_instances[0], n_features), (n_instances[1], n_features) np.random.seed(0) x = np.random.random(xshape).astype('float32') y = np.random.random(yshape).astype('float32') xda = da.from_array(x, chunks=xshape) yda = da.from_array(y, chunks=yshape) kwargs = {'sigma': np.array([1.])} mmd_xx = maximum_mean_discrepancy(x, x, **kwargs) mmd_xy = maximum_mean_discrepancy(x, y, **kwargs) mmd_xx_da = maximum_mean_discrepancy(xda, xda, **kwargs).compute() mmd_xy_da = maximum_mean_discrepancy(xda, yda, **kwargs).compute() assert mmd_xx == mmd_xx_da and mmd_xy == mmd_xy_da assert mmd_xy > mmd_xx
Example #10
Source File: test_distance.py From alibi-detect with Apache License 2.0 | 6 votes |
def test_pairwise(pairwise_params): n_features, n_instances = pairwise_params xshape, yshape = (n_instances[0], n_features), (n_instances[1], n_features) np.random.seed(0) x = np.random.random(xshape).astype('float32') y = np.random.random(yshape).astype('float32') xda = da.from_array(x, chunks=xshape) yda = da.from_array(y, chunks=yshape) dist_xx = pairwise_distance(x, x) dist_xy = pairwise_distance(x, y) dist_xx_da = pairwise_distance(xda, xda).compute() dist_xy_da = pairwise_distance(xda, yda).compute() assert dist_xx.shape == dist_xx_da.shape == (xshape[0], xshape[0]) assert dist_xy.shape == dist_xy_da.shape == n_instances assert (dist_xx == dist_xx_da).all() and (dist_xy == dist_xy_da).all() assert dist_xx.trace() == 0.
Example #11
Source File: test_kernels.py From alibi-detect with Apache License 2.0 | 6 votes |
def test_gaussian_kernel(gaussian_kernel_params): sigma, n_features, n_instances = gaussian_kernel_params xshape, yshape = (n_instances[0], n_features), (n_instances[1], n_features) x = np.random.random(xshape).astype('float32') y = np.random.random(yshape).astype('float32') xda = da.from_array(x, chunks=xshape) yda = da.from_array(y, chunks=yshape) gk_xy = gaussian_kernel(x, y, sigma=sigma) gk_xx = gaussian_kernel(x, x, sigma=sigma) gk_xy_da = gaussian_kernel(xda, yda, sigma=sigma).compute() gk_xx_da = gaussian_kernel(xda, xda, sigma=sigma).compute() assert gk_xy.shape == n_instances and gk_xx.shape == (xshape[0], xshape[0]) assert (gk_xx == gk_xx_da).all() and (gk_xy == gk_xy_da).all() assert gk_xx.trace() == xshape[0] * len(sigma) assert (gk_xx > 0.).all() and (gk_xy > 0.).all()
Example #12
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_intensity_peaks_image_disk_r(self): numpy_array = np.zeros((50, 50)) numpy_array[27, 29] = 2 numpy_array[11, 15] = 1 image = da.from_array(numpy_array, chunks=(50, 50)) peak = np.array([[27, 29], [11, 15]], np.int32) peak_dask = da.from_array(peak, chunks=(1, 1)) disk_r0 = 1 disk_r1 = 2 intensity0 = dt._intensity_peaks_image_single_frame(image, peak_dask, disk_r0) intensity1 = dt._intensity_peaks_image_single_frame(image, peak_dask, disk_r1) assert intensity0[0].all() == np.array([27.0, 29.0, 2 / 9]).all() assert intensity0[1].all() == np.array([11.0, 15.0, 1 / 9]).all() assert intensity1[0].all() == np.array([27.0, 29.0, 2 / 25]).all() assert intensity1[1].all() == np.array([11.0, 15.0, 1 / 25]).all() assert intensity0.shape == intensity1.shape == (2, 3)
Example #13
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_correct_radius_simple(self): x, y, r, px, py = 40, 51, 30, 4, 5 s = mdtd.generate_4d_data( probe_size_x=px, probe_size_y=py, image_size_x=120, image_size_y=100, disk_I=0, ring_x=x, ring_y=y, ring_r=r, ring_I=5, blur=True, downscale=False, ) dask_array = da.from_array(s.data, chunks=(4, 4, 50, 50)) s = LazyDiffraction2D(dask_array) s.axes_manager.signal_axes[0].offset = -x s.axes_manager.signal_axes[1].offset = -y s_r = s.radial_average() assert s_r.axes_manager.navigation_shape == (px, py) assert (s_r.data.argmax(axis=-1) == 30).all()
Example #14
Source File: transform.py From nbodykit with GNU General Public License v3.0 | 6 votes |
def ConstantArray(value, size, chunks=100000): """ Return a dask array of the specified ``size`` holding a single value. This uses numpy's "stride tricks" to avoid replicating the data in memory for each element of the array. Parameters ---------- value : float the scalar value to fill the array with size : int the length of the returned dask array chunks : int, optional the size of the dask array chunks """ ele = numpy.array(value) toret = numpy.lib.stride_tricks.as_strided(ele, [size] + list(ele.shape), [0] + list(ele.strides)) return da.from_array(toret, chunks=chunks, name=False)
Example #15
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_correct_radius_random(self): x, y, px, py = 56, 48, 4, 5 r = np.random.randint(20, 40, size=(py, px)) s = mdtd.generate_4d_data( probe_size_x=px, probe_size_y=py, image_size_x=120, image_size_y=100, disk_I=0, ring_x=x, ring_y=y, ring_r=r, ring_I=5, blur=True, downscale=False, ) dask_array = da.from_array(s.data, chunks=(4, 4, 50, 50)) s = LazyDiffraction2D(dask_array) s.axes_manager.signal_axes[0].offset = -x s.axes_manager.signal_axes[1].offset = -y s_r = s.radial_average() assert (s_r.data.argmax(axis=-1) == r).all()
Example #16
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_simple(self): array0 = da.ones(shape=(10, 10, 40, 40), chunks=(5, 5, 5, 5)) s0 = LazyDiffraction2D(array0) s0_r = s0.radial_average() assert (s0_r.data[:, :, :-1] == 1).all() data_shape = 2, 2, 11, 11 array1 = np.zeros(data_shape) array1[:, :, 5, 5] = 1 dask_array = da.from_array(array1, chunks=(1, 1, 1, 1)) s1 = LazyDiffraction2D(dask_array) s1.axes_manager.signal_axes[0].offset = -5 s1.axes_manager.signal_axes[1].offset = -5 s1_r = s1.radial_average() assert np.all(s1_r.data[:, :, 0] == 1) assert np.all(s1_r.data[:, :, 1:] == 0)
Example #17
Source File: precomputed.py From cloud-volume with BSD 3-Clause "New" or "Revised" License | 6 votes |
def to_dask(self, chunks=None, name=None): """Return a dask array for this volume. Parameters ---------- chunks: tuple of ints or tuples of ints Passed to ``da.from_array``, allows setting the chunks on initialisation, if the chunking scheme in the stored dataset is not optimal for the calculations to follow. Note that the chunking should be compatible with an underlying 4d array. name: str, optional An optional keyname for the array. Defaults to hashing the input Returns ------- Dask array """ import dask.array as da from dask.base import tokenize if chunks is None: chunks = tuple(self.chunk_size) + (self.num_channels, ) if name is None: name = 'to-dask-' + tokenize(self, chunks) return da.from_array(self, chunks, name=name)
Example #18
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_array_different_dimensions(self, nav_dims): shape = list(np.random.randint(2, 6, size=nav_dims)) shape.extend([50, 50]) chunks = [1] * nav_dims chunks.extend([25, 25]) dask_array = da.random.random(size=shape, chunks=chunks) peak_array = np.zeros((dask_array.shape[:-2]), dtype=np.object) for index in np.ndindex(dask_array.shape[:-2]): islice = np.s_[index] peak_array[islice] = np.asarray([(27, 27)]) square_size = 12 peak_array_dask = da.from_array(peak_array, chunks=chunks[:-2]) match_array_dask = dt._peak_refinement_centre_of_mass( dask_array, peak_array_dask, square_size ) assert len(dask_array.shape) == nav_dims + 2 match_array = match_array_dask.compute() assert peak_array_dask.shape == match_array.shape
Example #19
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 6 votes |
def test_dask_array(self): numpy_array = np.zeros((10, 10, 50, 50)) numpy_array[:, :, 25, 25] = 1 peak_array = np.zeros((numpy_array.shape[:-2]), dtype=np.object) real_array = np.zeros((numpy_array.shape[:-2]), dtype=np.object) for index in np.ndindex(numpy_array.shape[:-2]): islice = np.s_[index] peak_array[islice] = np.asarray([(27, 27)]) real_array[islice] = np.asarray([(25, 25)]) dask_array = da.from_array(numpy_array, chunks=(5, 5, 5, 5)) dask_peak_array = da.from_array(peak_array, chunks=(5, 5)) square_size = 12 data = dt._peak_refinement_centre_of_mass( dask_array, dask_peak_array, square_size ) data = data.compute() assert data.shape == (10, 10) assert np.sum(data - real_array).sum() == 0
Example #20
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_dask_array_normalize_value(self): data = np.zeros((2, 3, 100, 100), dtype=np.uint16) data[:, :, 49:52, 49:52] = 100 data[:, :, 19:22, 9:12] = 10 dask_array = da.from_array(data, chunks=(1, 1, 100, 100)) peak_array0 = dt._peak_find_dog(dask_array, normalize_value=100) peak_array1 = dt._peak_find_dog(dask_array, normalize_value=10) for ix, iy in np.ndindex(peak_array0.shape): assert (peak_array0[ix, iy] == [[50, 50]]).all() assert (peak_array1[ix, iy] == [[50, 50], [20, 10]]).all()
Example #21
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_dask_min_sigma(self): min_sigma = 10 numpy_array = np.ones((10, 10, 50, 50)) numpy_array[:, :20:30, 20:30] = 5 dask_array = da.from_array(numpy_array, chunks=(2, 2, 50, 50)) data = dt._background_removal_dog(dask_array, min_sigma=min_sigma) data.compute() assert data.sum() != numpy_array.sum() assert data.shape == numpy_array.shape assert data[:, :, 0, :].all() == 0
Example #22
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_array_different_dimensions(self, nav_dims): shape = list(np.random.randint(2, 6, size=nav_dims)) shape.extend([50, 50]) chunks = [1] * nav_dims chunks.extend([25, 25]) dask_array = da.random.random(size=shape, chunks=chunks) peak_array = np.zeros((dask_array.shape[:-2]), dtype=np.object) for index in np.ndindex(dask_array.shape[:-2]): islice = np.s_[index] peak_array[islice] = np.asarray([(27, 27)]) peak_array_dask = da.from_array(peak_array, chunks=chunks[:-2]) match_array_dask = dt._intensity_peaks_image(dask_array, peak_array_dask, 5) assert len(dask_array.shape) == nav_dims + 2 match_array = match_array_dask.compute() assert peak_array_dask.shape == match_array.shape
Example #23
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_dask_array(self): data = np.zeros(shape=(2, 3, 200, 100), dtype=np.float64) data[0, 0, 50, 20] = 100 data[0, 1, 51, 21] = 100 data[0, 2, 52, 22] = 100 data[1, 0, 53, 23] = 100 data[1, 1, 54, 24] = 100 data[1, 2, 55, 25] = 100 dask_array = da.from_array(data, chunks=(1, 1, 200, 100)) min_sigma, max_sigma, num_sigma = 0.08, 1, 10 threshold, overlap = 0.06, 0.01 peaks = dt._peak_find_log( dask_array, min_sigma=min_sigma, max_sigma=max_sigma, num_sigma=num_sigma, threshold=threshold, overlap=overlap, ) peaks = peaks.compute() assert peaks[0, 0][0].tolist() == [50, 20] assert peaks[0, 1][0].tolist() == [51, 21] assert peaks[0, 2][0].tolist() == [52, 22] assert peaks[1, 0][0].tolist() == [53, 23] assert peaks[1, 1][0].tolist() == [54, 24] assert peaks[1, 2][0].tolist() == [55, 25]
Example #24
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_dask_centre(self): centre_x = 25 centre_y = 25 numpy_array = np.ones((10, 10, 50, 50)) numpy_array[:, :20:30, 20:30] = 5 dask_array = da.from_array(numpy_array, chunks=(2, 2, 50, 50)) data = dt._background_removal_radial_median( dask_array, centre_x=centre_x, centre_y=centre_y ) data = data.compute() assert data.sum() != numpy_array.sum() assert data.shape == numpy_array.shape assert (data[:, :, 0, :]).all() == 0
Example #25
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_2d(self): data = np.ones((100, 90)) data[41, 21] = 0 data[9, 81] = 50000 dask_array = da.from_array(data, chunks=(10, 10)) s = LazyDiffraction2D(dask_array) s_dead_pixels = s.find_dead_pixels(lazy_result=True) s_hot_pixels = s.find_hot_pixels(lazy_result=True) s_bad_pixels = s_dead_pixels + s_hot_pixels s_corr = s.correct_bad_pixels(s_bad_pixels) assert s_dead_pixels.data.shape == data.shape assert s_dead_pixels._lazy s_corr.compute() assert (s_corr.data == 1.0).all()
Example #26
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_position(self): disk_r = 5 data = np.zeros((2, 3, 90, 100)) # Nav top left, sig x=5, y=5 data[0, 0, :11, :11] = sm.disk(disk_r) # Nav top centre, sig x=94, y=84 data[0, 1, -11:, -11:] = sm.disk(disk_r) # Nav top right, sig x=94, y=5 data[0, 2, :11, -11:] = sm.disk(disk_r) # Nav bottom left, sig x=5, y=84 data[1, 0, -11:, :11] = sm.disk(disk_r) # Nav bottom centre, sig x=75, y=25 data[1, 1, 20:31, 70:81] = sm.disk(disk_r) # Nav bottom right, sig x=55, y=75 data[1, 2, 70:81, 50:61] = sm.disk(disk_r) binary_image = sm.disk(disk_r) dask_array = da.from_array(data, chunks=(1, 1, 5, 5)) out_dask = dt._template_match_with_binary_image( dask_array, binary_image=binary_image ) out = out_dask.compute() match00 = np.unravel_index(np.argmax(out[0, 0]), out[0, 0].shape) assert (5, 5) == match00 match01 = np.unravel_index(np.argmax(out[0, 1]), out[0, 1].shape) assert (84, 94) == match01 match02 = np.unravel_index(np.argmax(out[0, 2]), out[0, 2].shape) assert (5, 94) == match02 match10 = np.unravel_index(np.argmax(out[1, 0]), out[1, 0].shape) assert (84, 5) == match10 match11 = np.unravel_index(np.argmax(out[1, 1]), out[1, 1].shape) assert (25, 75) == match11 match12 = np.unravel_index(np.argmax(out[1, 2]), out[1, 2].shape) assert (75, 55) == match12
Example #27
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_dask_max_sigma(self): max_sigma = 10 numpy_array = np.ones((10, 10, 50, 50)) numpy_array[:, :20:30, 20:30] = 5 dask_array = da.from_array(numpy_array, chunks=(2, 2, 50, 50)) data = dt._background_removal_dog(dask_array, max_sigma=max_sigma) data.compute() assert data.sum() != numpy_array.sum() assert data.shape == numpy_array.shape assert data[:, :, 0, :].all() == 0
Example #28
Source File: test_dask_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_dask_array_normalize_value(self): data = np.zeros((2, 3, 100, 100), dtype=np.uint16) data[:, :, 49:52, 49:52] = 100 data[:, :, 19:22, 9:12] = 10 dask_array = da.from_array(data, chunks=(1, 1, 100, 100)) peak_array0 = dt._peak_find_log(dask_array, normalize_value=100) peak_array1 = dt._peak_find_log(dask_array, normalize_value=10) for ix, iy in np.ndindex(peak_array0.shape): assert (peak_array0[ix, iy] == [[50, 50]]).all() assert (peak_array1[ix, iy] == [[50, 50], [20, 10]]).all()
Example #29
Source File: test_pixelated_stem_tools.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_mask(self): numpy_array = np.zeros((10, 10, 30, 30)) numpy_array[:, :, 0, 0] = 1000 numpy_array[:, :, -1, -1] = 1 dask_array = da.from_array(numpy_array, chunks=(5, 5, 5, 5)) centre_x, centre_y = np.ones((2, 100)) * 15 data = pst._radial_average_dask_array( dask_array, return_sig_size=22, centre_x=centre_x, centre_y=centre_y, normalize=False, show_progressbar=False, ) assert data.shape == (10, 10, 22) assert (data != 0.0).any() mask = pst._make_circular_mask(15, 15, 30, 30, 15) data = pst._radial_average_dask_array( dask_array, return_sig_size=22, centre_x=centre_x, centre_y=centre_y, normalize=False, mask_array=mask, show_progressbar=False, ) assert data.shape == (10, 10, 22) assert (data == 0.0).all()
Example #30
Source File: test_pixelated_stem_class.py From pyxem with GNU General Public License v3.0 | 5 votes |
def test_lazy_output(self, methods): data = np.random.randint(100, size=(3, 2, 10, 20)) s = LazyDiffraction2D(da.from_array(data, chunks=(1, 1, 5, 10))) peak_array = s.find_peaks_lazy(method=methods, lazy_result=False) assert s.data.shape[:2] == peak_array.shape assert not hasattr(peak_array, "compute")