Python torch.nn.init.constant() Examples
The following are 30
code examples of torch.nn.init.constant().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn.init
, or try the search function
.
Example #1
Source File: network.py From DMIT with MIT License | 7 votes |
def weights_init(init_type='xavier'): def init_fun(m): classname = m.__class__.__name__ if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'): if init_type == 'normal': init.normal(m.weight.data, 0.0, 0.02) elif init_type == 'xavier': init.xavier_normal(m.weight.data, gain=math.sqrt(2)) elif init_type == 'kaiming': init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal(m.weight.data, gain=math.sqrt(2)) elif init_type == 'default': pass else: assert 0, "Unsupported initialization: {}".format(init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant(m.bias.data, 0.0) elif (classname.find('Norm') == 0): if hasattr(m, 'weight') and m.weight is not None: init.constant(m.weight.data, 1.0) if hasattr(m, 'bias') and m.bias is not None: init.constant(m.bias.data, 0.0) return init_fun
Example #2
Source File: bnlstm.py From RAdam with Apache License 2.0 | 7 votes |
def reset_parameters(self): """ Initialize parameters following the way proposed in the paper. """ # The input-to-hidden weight matrix is initialized orthogonally. init.orthogonal(self.weight_ih.data) # The hidden-to-hidden weight matrix is initialized as an identity # matrix. weight_hh_data = torch.eye(self.hidden_size) weight_hh_data = weight_hh_data.repeat(1, 4) self.weight_hh.data.set_(weight_hh_data) # The bias is just set to zero vectors. init.constant(self.bias.data, val=0) # Initialization of BN parameters. self.bn_ih.reset_parameters() self.bn_hh.reset_parameters() self.bn_c.reset_parameters() self.bn_ih.bias.data.fill_(0) self.bn_hh.bias.data.fill_(0) self.bn_ih.weight.data.fill_(0.1) self.bn_hh.weight.data.fill_(0.1) self.bn_c.weight.data.fill_(0.1)
Example #3
Source File: alexnet_all.py From alibabacloud-quantization-networks with Apache License 2.0 | 6 votes |
def reset_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_in') if m.bias is not None: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.kaiming_normal(m.weight, mode='fan_in') if m.bias is not None: init.constant(m.bias, 0)
Example #4
Source File: model.py From FCN-semantic-segmentation with MIT License | 6 votes |
def __init__(self, num_classes, pretrained_net): super().__init__() self.pretrained_net = pretrained_net self.relu = nn.ReLU(inplace=True) self.conv5 = conv(512, 256, stride=2, transposed=True) self.bn5 = bn(256) self.conv6 = conv(256, 128, stride=2, transposed=True) self.bn6 = bn(128) self.conv7 = conv(128, 64, stride=2, transposed=True) self.bn7 = bn(64) self.conv8 = conv(64, 64, stride=2, transposed=True) self.bn8 = bn(64) self.conv9 = conv(64, 32, stride=2, transposed=True) self.bn9 = bn(32) self.conv10 = conv(32, num_classes, kernel_size=7) init.constant(self.conv10.weight, 0) # Zero init
Example #5
Source File: model.py From FCN-semantic-segmentation with MIT License | 6 votes |
def conv(in_planes, out_planes, kernel_size=3, stride=1, dilation=1, bias=False, transposed=False): if transposed: layer = nn.ConvTranspose2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=1, output_padding=1, dilation=dilation, bias=bias) # Bilinear interpolation init w = torch.Tensor(kernel_size, kernel_size) centre = kernel_size % 2 == 1 and stride - 1 or stride - 0.5 for y in range(kernel_size): for x in range(kernel_size): w[y, x] = (1 - abs((x - centre) / stride)) * (1 - abs((y - centre) / stride)) layer.weight.data.copy_(w.div(in_planes).repeat(in_planes, out_planes, 1, 1)) else: padding = (kernel_size + 2 * (dilation - 1)) // 2 layer = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, bias=bias) if bias: init.constant(layer.bias, 0) return layer # Returns 2D batch normalisation layer
Example #6
Source File: utils.py From mixup_pytorch with MIT License | 6 votes |
def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0) #_, term_width = os.popen('stty size', 'r').read().split() # term_width = int(term_width)
Example #7
Source File: SDAE.py From DCC with MIT License | 6 votes |
def __init__(self, dim, dropout=0.2, slope=0.0): super(SDAE, self).__init__() self.in_dim = dim[0] self.nlayers = len(dim)-1 self.reluslope = slope self.enc, self.dec = [], [] for i in range(self.nlayers): self.enc.append(nn.Linear(dim[i], dim[i+1])) setattr(self, 'enc_{}'.format(i), self.enc[-1]) self.dec.append(nn.Linear(dim[i+1], dim[i])) setattr(self, 'dec_{}'.format(i), self.dec[-1]) self.base = [] for i in range(self.nlayers): self.base.append(nn.Sequential(*self.enc[:i])) self.dropmodule1 = nn.Dropout(p=dropout) self.dropmodule2 = nn.Dropout(p=dropout) self.loss = nn.MSELoss(size_average=True) # initialization for m in self.modules(): if isinstance(m, nn.Linear): init.normal(m.weight, std=1e-2) if m.bias.data is not None: init.constant(m.bias, 0)
Example #8
Source File: extractSDAE.py From DCC with MIT License | 6 votes |
def __init__(self, dim, slope=0.0): super(extractSDAE, self).__init__() self.in_dim = dim[0] self.nlayers = len(dim)-1 self.reluslope = slope self.enc, self.dec = [], [] for i in range(self.nlayers): self.enc.append(nn.Linear(dim[i], dim[i+1])) setattr(self, 'enc_{}'.format(i), self.enc[-1]) self.dec.append(nn.Linear(dim[i+1], dim[i])) setattr(self, 'dec_{}'.format(i), self.dec[-1]) self.base = [] for i in range(self.nlayers): self.base.append(nn.Sequential(*self.enc[:i])) # initialization for m in self.modules(): if isinstance(m, nn.Linear): init.normal(m.weight, std=1e-2) if m.bias.data is not None: init.constant(m.bias, 0)
Example #9
Source File: alexnet.py From alibabacloud-quantization-networks with Apache License 2.0 | 6 votes |
def reset_params(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_in') if m.bias is not None: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm1d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.kaiming_normal(m.weight, mode='fan_in') if m.bias is not None: init.constant(m.bias, 0)
Example #10
Source File: networks.py From iSketchNFill with GNU General Public License v3.0 | 5 votes |
def weights_init_normal(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.uniform(m.weight.data, 0.0, 0.02) elif classname.find('Linear') != -1: init.uniform(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)
Example #11
Source File: networks.py From Single-Image-Reflection-Removal-Beyond-Linearity with MIT License | 5 votes |
def weights_init_kaiming(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('Linear') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('BatchNorm2d') != -1: init.normal(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)
Example #12
Source File: networks.py From Single-Image-Reflection-Removal-Beyond-Linearity with MIT License | 5 votes |
def weights_init_orthogonal(m): classname = m.__class__.__name__ print(classname) if classname.find('Conv') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('Linear') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('BatchNorm2d') != -1: init.normal(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)
Example #13
Source File: networks.py From Single-Image-Reflection-Removal-Beyond-Linearity with MIT License | 5 votes |
def weights_init_normal(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.normal(m.weight.data, 0.0, 0.02) elif classname.find('Linear') != -1: init.normal(m.weight.data, 0.0, 0.02) elif classname.find('BatchNorm2d') != -1: init.normal(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)
Example #14
Source File: misc.py From HBONet with Apache License 2.0 | 5 votes |
def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0)
Example #15
Source File: misc.py From pytorch-priv with MIT License | 5 votes |
def init_params(net): """Init layer parameters.""" for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0)
Example #16
Source File: misc.py From attention_branch_network with MIT License | 5 votes |
def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0)
Example #17
Source File: networks.py From Single-Image-Reflection-Removal-Beyond-Linearity with MIT License | 5 votes |
def weights_init_xavier(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.xavier_normal(m.weight.data, gain=0.02) elif classname.find('Linear') != -1: init.xavier_normal(m.weight.data, gain=0.02) elif classname.find('BatchNorm2d') != -1: init.normal(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)
Example #18
Source File: network.py From Counting-ICCV-DSSINet with MIT License | 5 votes |
def weights_normal_init(model, dev=0.01): if isinstance(model, list): for m in model: weights_normal_init(m, dev) else: for m in model.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0.0, dev) if m.bias is not None: m.bias.data.fill_(0.0) elif isinstance(m, nn.LSTM): for weight_set in m._all_weights: for param in weight_set: if 'weight' in param: m.__getattr__(param).data.normal_(0.0, dev) if 'bias' in param: m.__getattr__(param).data.fill_(0.0) elif isinstance(m, _Conv2d_dilated): m.weight.data.copy_(m.weight.data.normal_(0.0, dev)) if m.bias is not None: m.bias.data.fill_(0.0) elif isinstance(m, nn.Linear): m.weight.data.normal_(0.0, dev) elif isinstance(m, nn.BatchNorm2d): init.normal(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)
Example #19
Source File: tools.py From binseg_pytoch with Apache License 2.0 | 5 votes |
def initialize_weights(method='kaiming', *models): for model in models: for module in model.modules(): if isinstance(module, nn.Conv2d) or isinstance(module, nn.ConvTranspose2d) or isinstance(module, nn.Linear): if method == 'kaiming': init.kaiming_normal(module.weight.data, np.sqrt(2.0)) elif method == 'xavier': init.xavier_normal(module.weight.data, np.sqrt(2.0)) elif method == 'orthogonal': init.orthogonal(module.weight.data, np.sqrt(2.0)) elif method == 'normal': init.normal(module.weight.data,mean=0, std=0.02) if module.bias is not None: init.constant(module.bias.data,0)
Example #20
Source File: vgg_refine_drfssd.py From DRFNet with MIT License | 5 votes |
def reset_parameters(self): init.constant(self.weight, self.gamma)
Example #21
Source File: networks.py From iSketchNFill with GNU General Public License v3.0 | 5 votes |
def weights_init_kaiming(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('Linear') != -1: init.kaiming_normal(m.weight.data, a=0, mode='fan_in') elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)
Example #22
Source File: vgg_ssd.py From DRFNet with MIT License | 5 votes |
def reset_parameters(self): init.constant(self.weight, self.gamma)
Example #23
Source File: vgg_drfssd.py From DRFNet with MIT License | 5 votes |
def reset_parameters(self): init.constant(self.weight, self.gamma)
Example #24
Source File: networks.py From iSketchNFill with GNU General Public License v3.0 | 5 votes |
def weights_init_xavier(m): classname = m.__class__.__name__ # print(classname) if classname.find('Conv') != -1: init.xavier_normal(m.weight.data, gain=1) elif classname.find('Linear') != -1: init.xavier_normal(m.weight.data, gain=1) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)
Example #25
Source File: utils.py From one-pixel-attack-pytorch with MIT License | 5 votes |
def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0)
Example #26
Source File: config.py From Detectron.pytorch with MIT License | 5 votes |
def assert_and_infer_cfg(make_immutable=True): """Call this function in your script after you have finished setting all cfg values that are necessary (e.g., merging a config from a file, merging command line config options, etc.). By default, this function will also mark the global cfg as immutable to prevent changing the global cfg settings during script execution (which can lead to hard to debug errors or code that's harder to understand than is necessary). """ if __C.MODEL.RPN_ONLY or __C.MODEL.FASTER_RCNN: __C.RPN.RPN_ON = True if __C.RPN.RPN_ON or __C.RETINANET.RETINANET_ON: __C.TEST.PRECOMPUTED_PROPOSALS = False if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS: assert __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS, \ "Path to the weight file must not be empty to load imagenet pertrained resnets." if set([__C.MRCNN.ROI_MASK_HEAD, __C.KRCNN.ROI_KEYPOINTS_HEAD]) & _SHARE_RES5_HEADS: __C.MODEL.SHARE_RES5 = True if version.parse(torch.__version__) < version.parse('0.4.0'): __C.PYTORCH_VERSION_LESS_THAN_040 = True # create alias for PyTorch version less than 0.4.0 init.uniform_ = init.uniform init.normal_ = init.normal init.constant_ = init.constant nn.GroupNorm = mynn.GroupNorm if make_immutable: cfg.immutable(True)
Example #27
Source File: utils.py From mixup with BSD 3-Clause "New" or "Revised" License | 5 votes |
def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0)
Example #28
Source File: l2norm.py From lightDSFD with MIT License | 5 votes |
def reset_parameters(self): init.constant(self.weight,self.gamma)
Example #29
Source File: networks.py From iSketchNFill with GNU General Public License v3.0 | 5 votes |
def get_scheduler(optimizer, opt): if opt.lr_policy == 'lambda': def lambda_rule(epoch): lr_l = 1.0 - max(0, epoch + 1 + opt.epoch_count - opt.niter) / float(opt.niter_decay + 1) return lr_l scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule) elif opt.lr_policy == 'step': init.constant(m.bias.data, 0.0)
Example #30
Source File: networks.py From iSketchNFill with GNU General Public License v3.0 | 5 votes |
def weights_init_orthogonal(m): classname = m.__class__.__name__ print(classname) if classname.find('Conv') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('Linear') != -1: init.orthogonal(m.weight.data, gain=1) elif classname.find('BatchNorm2d') != -1: init.uniform(m.weight.data, 1.0, 0.02) init.constant(m.bias.data, 0.0)