Python numpy.float_() Examples
The following are 30
code examples of numpy.float_().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: numpy_fenics.py From torch-fenics with GNU General Public License v3.0 | 7 votes |
def fenics_to_numpy(fenics_var): """Convert FEniCS variable to numpy array""" if isinstance(fenics_var, (fenics.Constant, fenics_adjoint.Constant)): return fenics_var.values() if isinstance(fenics_var, (fenics.Function, fenics_adjoint.Constant)): np_array = fenics_var.vector().get_local() n_sub = fenics_var.function_space().num_sub_spaces() # Reshape if function is multi-component if n_sub != 0: np_array = np.reshape(np_array, (len(np_array) // n_sub, n_sub)) return np_array if isinstance(fenics_var, fenics.GenericVector): return fenics_var.get_local() if isinstance(fenics_var, fenics_adjoint.AdjFloat): return np.array(float(fenics_var), dtype=np.float_) raise ValueError('Cannot convert ' + str(type(fenics_var)))
Example #2
Source File: testutils.py From lambda-packs with MIT License | 6 votes |
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example #3
Source File: testutils.py From vnpy_crypto with MIT License | 6 votes |
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example #4
Source File: testutils.py From vnpy_crypto with MIT License | 6 votes |
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
Example #5
Source File: test_arithmetic.py From mars with Apache License 2.0 | 6 votes |
def testFrexp(self): t1 = ones((3, 4, 5), chunk_size=2) t2 = empty((3, 4, 5), dtype=np.float_, chunk_size=2) op_type = type(t1.op) o1, o2 = frexp(t1) self.assertIs(o1.op, o2.op) self.assertNotEqual(o1.dtype, o2.dtype) o1, o2 = frexp(t1, t1) self.assertIs(o1, t1) self.assertIsNot(o1.inputs[0], t1) self.assertIsInstance(o1.inputs[0].op, op_type) self.assertIsNot(o2.inputs[0], t1) o1, o2 = frexp(t1, t2, where=t1 > 0) op_type = type(t2.op) self.assertIs(o1, t2) self.assertIsNot(o1.inputs[0], t1) self.assertIsInstance(o1.inputs[0].op, op_type) self.assertIsNot(o2.inputs[0], t1)
Example #6
Source File: test_session.py From mars with Apache License 2.0 | 6 votes |
def testArrayProtocol(self): arr = mt.ones((10, 20)) result = np.asarray(arr) np.testing.assert_array_equal(result, np.ones((10, 20))) arr2 = mt.ones((10, 20)) result = np.asarray(arr2, mt.bool_) np.testing.assert_array_equal(result, np.ones((10, 20), dtype=np.bool_)) arr3 = mt.ones((10, 20)).sum() result = np.asarray(arr3) np.testing.assert_array_equal(result, np.asarray(200)) arr4 = mt.ones((10, 20)).sum() result = np.asarray(arr4, dtype=np.float_) np.testing.assert_array_equal(result, np.asarray(200, dtype=np.float_))
Example #7
Source File: test_indexing.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def test_empty_tuple_index(self): # Empty tuple index creates a view a = np.array([1, 2, 3]) assert_equal(a[()], a) assert_(a[()].base is a) a = np.array(0) assert_(isinstance(a[()], np.int_)) # Regression, it needs to fall through integer and fancy indexing # cases, so need the with statement to ignore the non-integer error. with warnings.catch_warnings(): warnings.filterwarnings('ignore', '', DeprecationWarning) a = np.array([1.]) assert_(isinstance(a[0.], np.float_)) a = np.array([np.array(1)], dtype=object) assert_(isinstance(a[0.], np.ndarray))
Example #8
Source File: test_constructors.py From recruit with Apache License 2.0 | 6 votes |
def test_fromValue(self, datetime_series): nans = Series(np.NaN, index=datetime_series.index) assert nans.dtype == np.float_ assert len(nans) == len(datetime_series) strings = Series('foo', index=datetime_series.index) assert strings.dtype == np.object_ assert len(strings) == len(datetime_series) d = datetime.now() dates = Series(d, index=datetime_series.index) assert dates.dtype == 'M8[ns]' assert len(dates) == len(datetime_series) # GH12336 # Test construction of categorical series from value categorical = Series(0, index=datetime_series.index, dtype="category") expected = Series(0, index=datetime_series.index).astype("category") assert categorical.dtype == 'category' assert len(categorical) == len(datetime_series) tm.assert_series_equal(categorical, expected)
Example #9
Source File: testutils.py From lambda-packs with MIT License | 6 votes |
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
Example #10
Source File: testutils.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example #11
Source File: testutils.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
Example #12
Source File: testutils.py From recruit with Apache License 2.0 | 6 votes |
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
Example #13
Source File: testutils.py From lambda-packs with MIT License | 6 votes |
def approx(a, b, fill_value=True, rtol=1e-5, atol=1e-8): """ Returns true if all components of a and b are equal to given tolerances. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. The relative error rtol should be positive and << 1.0 The absolute error atol comes into play for those elements of b that are very small or zero; it says how small a must be also. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.less_equal(umath.absolute(x - y), atol + rtol * umath.absolute(y)) return d.ravel()
Example #14
Source File: testutils.py From lambda-packs with MIT License | 6 votes |
def almost(a, b, decimal=6, fill_value=True): """ Returns True if a and b are equal up to decimal places. If fill_value is True, masked values considered equal. Otherwise, masked values are considered unequal. """ m = mask_or(getmask(a), getmask(b)) d1 = filled(a) d2 = filled(b) if d1.dtype.char == "O" or d2.dtype.char == "O": return np.equal(d1, d2).ravel() x = filled(masked_array(d1, copy=False, mask=m), fill_value).astype(float_) y = filled(masked_array(d2, copy=False, mask=m), 1).astype(float_) d = np.around(np.abs(x - y), decimal) <= 10.0 ** (-decimal) return d.ravel()
Example #15
Source File: test_linalg.py From recruit with Apache License 2.0 | 6 votes |
def test_nan(self): # nans should be passed through, not converted to infs ps = [None, 1, -1, 2, -2, 'fro'] p_pos = [None, 1, 2, 'fro'] A = np.ones((2, 2)) A[0,1] = np.nan for p in ps: c = linalg.cond(A, p) assert_(isinstance(c, np.float_)) assert_(np.isnan(c)) A = np.ones((3, 2, 2)) A[1,0,1] = np.nan for p in ps: c = linalg.cond(A, p) assert_(np.isnan(c[1])) if p in p_pos: assert_(c[0] > 1e15) assert_(c[2] > 1e15) else: assert_(not np.isnan(c[0])) assert_(not np.isnan(c[2]))
Example #16
Source File: test_regression.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_numpy_float_python_long_addition(self): # Check that numpy float and python longs can be added correctly. a = np.float_(23.) + 2**135 assert_equal(a, 23. + 2**135)
Example #17
Source File: test_extras.py From vnpy_crypto with MIT License | 5 votes |
def test_testAverage2(self): # More tests of average. w1 = [0, 1, 1, 1, 1, 0] w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] x = arange(6, dtype=np.float_) assert_equal(average(x, axis=0), 2.5) assert_equal(average(x, axis=0, weights=w1), 2.5) y = array([arange(6, dtype=np.float_), 2.0 * arange(6)]) assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.) assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) assert_equal(average(y, None, weights=w2), 20. / 6.) assert_equal(average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.]) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) m1 = zeros(6) m2 = [0, 0, 1, 1, 0, 0] m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] m4 = ones(6) m5 = [0, 1, 1, 1, 1, 1] assert_equal(average(masked_array(x, m1), axis=0), 2.5) assert_equal(average(masked_array(x, m2), axis=0), 2.5) assert_equal(average(masked_array(x, m4), axis=0).mask, [True]) assert_equal(average(masked_array(x, m5), axis=0), 0.0) assert_equal(count(average(masked_array(x, m4), axis=0)), 0) z = masked_array(y, m3) assert_equal(average(z, None), 20. / 6.) assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) assert_equal(average(z, axis=1), [2.5, 5.0]) assert_equal(average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0])
Example #18
Source File: solution_classes.py From risk-slim with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, obj): if isinstance(obj, SolutionPool): self._P = obj.P self._objvals = obj.objvals self._solutions = obj.solutions elif isinstance(obj, int): assert obj >= 1 self._P = int(obj) self._objvals = np.empty(0) self._solutions = np.empty(shape = (0, self._P)) elif isinstance(obj, dict): assert len(obj) == 2 objvals = np.copy(obj['objvals']).flatten().astype(dtype = np.float_) solutions = np.copy(obj['solutions']) n = objvals.size if solutions.ndim == 2: assert n in solutions.shape if solutions.shape[1] == n and solutions.shape[0] != n: solutions = np.transpose(solutions) elif solutions.ndim == 1: assert n == 1 solutions = np.reshape(solutions, (1, solutions.size)) else: raise ValueError('solutions has more than 2 dimensions') self._P = solutions.shape[1] self._objvals = objvals self._solutions = solutions else: raise ValueError('cannot initialize SolutionPool using %s object' % type(obj))
Example #19
Source File: test_indexing.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_scalar_return_type(self): # Full scalar indices should return scalars and object # arrays should not call PyArray_Return on their items class Zero(object): # The most basic valid indexing def __index__(self): return 0 z = Zero() class ArrayLike(object): # Simple array, should behave like the array def __array__(self): return np.array(0) a = np.zeros(()) assert_(isinstance(a[()], np.float_)) a = np.zeros(1) assert_(isinstance(a[z], np.float_)) a = np.zeros((1, 1)) assert_(isinstance(a[z, np.array(0)], np.float_)) assert_(isinstance(a[z, ArrayLike()], np.float_)) # And object arrays do not call it too often: b = np.array(0) a = np.array(0, dtype=object) a[()] = b assert_(isinstance(a[()], np.ndarray)) a = np.array([b, None]) assert_(isinstance(a[z], np.ndarray)) a = np.array([[b, None]]) assert_(isinstance(a[z, np.array(0)], np.ndarray)) assert_(isinstance(a[z, ArrayLike()], np.ndarray))
Example #20
Source File: test_deprecations.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_non_integer_sequence_multiplication(self): # Numpy scalar sequence multiply should not work with non-integers def mult(a, b): return a * b self.assert_deprecated(mult, args=([1], np.float_(3))) self.assert_not_deprecated(mult, args=([1], np.int_(3)))
Example #21
Source File: data.py From justcopy-backend with MIT License | 5 votes |
def __iter__(self): lengths = np.array( [(-l[0], -l[1], np.random.random()) for l in self.lengths], dtype=[('l1', np.int_), ('l2', np.int_), ('rand', np.float_)] ) indices = np.argsort(lengths, order=('l1', 'l2', 'rand')) batches = [indices[i:i + self.batch_size] for i in range(0, len(indices), self.batch_size)] if self.shuffle: np.random.shuffle(batches) return iter([i for batch in batches for i in batch])
Example #22
Source File: test_old_ma.py From lambda-packs with MIT License | 5 votes |
def test_ptp(self): (x, X, XX, m, mx, mX, mXX,) = self.d (n, m) = X.shape self.assertEqual(mx.ptp(), mx.compressed().ptp()) rows = np.zeros(n, np.float_) cols = np.zeros(m, np.float_) for k in range(m): cols[k] = mX[:, k].compressed().ptp() for k in range(n): rows[k] = mX[k].compressed().ptp() self.assertTrue(eq(mX.ptp(0), cols)) self.assertTrue(eq(mX.ptp(1), rows))
Example #23
Source File: test_extras.py From lambda-packs with MIT License | 5 votes |
def test_testAverage2(self): # More tests of average. w1 = [0, 1, 1, 1, 1, 0] w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] x = arange(6, dtype=np.float_) assert_equal(average(x, axis=0), 2.5) assert_equal(average(x, axis=0, weights=w1), 2.5) y = array([arange(6, dtype=np.float_), 2.0 * arange(6)]) assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.) assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) assert_equal(average(y, None, weights=w2), 20. / 6.) assert_equal(average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.]) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) m1 = zeros(6) m2 = [0, 0, 1, 1, 0, 0] m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] m4 = ones(6) m5 = [0, 1, 1, 1, 1, 1] assert_equal(average(masked_array(x, m1), axis=0), 2.5) assert_equal(average(masked_array(x, m2), axis=0), 2.5) assert_equal(average(masked_array(x, m4), axis=0).mask, [True]) assert_equal(average(masked_array(x, m5), axis=0), 0.0) assert_equal(count(average(masked_array(x, m4), axis=0)), 0) z = masked_array(y, m3) assert_equal(average(z, None), 20. / 6.) assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) assert_equal(average(z, axis=1), [2.5, 5.0]) assert_equal(average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0])
Example #24
Source File: test_extras.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def test_testAverage2(self): # More tests of average. w1 = [0, 1, 1, 1, 1, 0] w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] x = arange(6, dtype=np.float_) assert_equal(average(x, axis=0), 2.5) assert_equal(average(x, axis=0, weights=w1), 2.5) y = array([arange(6, dtype=np.float_), 2.0 * arange(6)]) assert_equal(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.) assert_equal(average(y, axis=0), np.arange(6) * 3. / 2.) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) assert_equal(average(y, None, weights=w2), 20. / 6.) assert_equal(average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.]) assert_equal(average(y, axis=1), [average(x, axis=0), average(x, axis=0) * 2.0]) m1 = zeros(6) m2 = [0, 0, 1, 1, 0, 0] m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] m4 = ones(6) m5 = [0, 1, 1, 1, 1, 1] assert_equal(average(masked_array(x, m1), axis=0), 2.5) assert_equal(average(masked_array(x, m2), axis=0), 2.5) assert_equal(average(masked_array(x, m4), axis=0).mask, [True]) assert_equal(average(masked_array(x, m5), axis=0), 0.0) assert_equal(count(average(masked_array(x, m4), axis=0)), 0) z = masked_array(y, m3) assert_equal(average(z, None), 20. / 6.) assert_equal(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5]) assert_equal(average(z, axis=1), [2.5, 5.0]) assert_equal(average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0])
Example #25
Source File: rbf.py From lambda-packs with MIT License | 5 votes |
def __call__(self, *args): args = [np.asarray(x) for x in args] if not all([x.shape == y.shape for x in args for y in args]): raise ValueError("Array lengths must be equal") shp = args[0].shape xa = np.asarray([a.flatten() for a in args], dtype=np.float_) r = self._call_norm(xa, self.xi) return np.dot(self._function(r), self.nodes).reshape(shp)
Example #26
Source File: rbf.py From lambda-packs with MIT License | 5 votes |
def __init__(self, *args, **kwargs): self.xi = np.asarray([np.asarray(a, dtype=np.float_).flatten() for a in args[:-1]]) self.N = self.xi.shape[-1] self.di = np.asarray(args[-1]).flatten() if not all([x.size == self.di.size for x in self.xi]): raise ValueError("All arrays must be equal length.") self.norm = kwargs.pop('norm', self._euclidean_norm) self.epsilon = kwargs.pop('epsilon', None) if self.epsilon is None: # default epsilon is the "the average distance between nodes" based # on a bounding hypercube dim = self.xi.shape[0] ximax = np.amax(self.xi, axis=1) ximin = np.amin(self.xi, axis=1) edges = ximax-ximin edges = edges[np.nonzero(edges)] self.epsilon = np.power(np.prod(edges)/self.N, 1.0/edges.size) self.smooth = kwargs.pop('smooth', 0.0) self.function = kwargs.pop('function', 'multiquadric') # attach anything left in kwargs to self # for use by any user-callable function or # to save on the object returned. for item, value in kwargs.items(): setattr(self, item, value) self.nodes = linalg.solve(self.A, self.di)
Example #27
Source File: sputils.py From lambda-packs with MIT License | 5 votes |
def get_sum_dtype(dtype): """Mimic numpy's casting for np.sum""" if np.issubdtype(dtype, np.float_): return np.float_ if dtype.kind == 'u' and np.can_cast(dtype, np.uint): return np.uint if np.can_cast(dtype, np.int_): return np.int_ return dtype
Example #28
Source File: observable_array.py From paramz with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __new__(cls, input_array, *a, **kw): # allways make a copy of input paramters, as we need it to be in C order: if not isinstance(input_array, ObsAr): try: # try to cast ints to floats obj = np.atleast_1d(np.require(input_array, dtype=np.float_, requirements=['W', 'C'])).view(cls) except ValueError: # do we have other dtypes in the array? obj = np.atleast_1d(np.require(input_array, requirements=['W', 'C'])).view(cls) else: obj = input_array super(ObsAr, obj).__init__(*a, **kw) return obj
Example #29
Source File: observable_tests.py From paramz with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_casting(self): ints = np.array(range(10)) self.assertEqual(ints.dtype, np.int_) floats = np.arange(0,5,.5) self.assertEqual(floats.dtype, np.float_) strings = np.array(list('testing')) self.assertEqual(strings.dtype.type, np.str_) self.assertEqual(ObsAr(ints).dtype, np.float_) self.assertEqual(ObsAr(floats).dtype, np.float_) self.assertEqual(ObsAr(strings).dtype.type, np.str_)
Example #30
Source File: core.py From mars with Apache License 2.0 | 5 votes |
def mutable_tensor(name, shape=None, dtype=np.float_, fill_value=None, chunk_size=None): """ Create or get a mutable tensor using the local or default session. When `shape` is `None`, it will try to get the mutable tensor with name `name`. Otherwise, it will try to create a mutable tensor using the provided `name` and `shape`. Parameters ---------- name : str Name of the mutable tensor. shape : int or sequence of ints Shape of the new mutable tensor, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the mutable tensor, e.g., `mt.int8`. Default is `mt.float_`. chunk_size: int or tuple of ints, optional Specifies chunk size for each dimension. fill_value: scalar, optional The created mutable tensor will be filled by `fill_value` defaultly, if the parameter is None, the newly created mutable tensor will be initialized with `np.zeros`. See also `numpy.full`. """ from ..session import Session session = Session.default_or_local() if shape is None: return session.get_mutable_tensor(name) else: return session.create_mutable_tensor(name, shape=shape, dtype=dtype, fill_value=fill_value, chunk_size=chunk_size)