Python sklearn.isotonic.IsotonicRegression() Examples

The following are 9 code examples of sklearn.isotonic.IsotonicRegression(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.isotonic , or try the search function .
Example #1
Source File: test_isotonic.py    From pandas-ml with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def test_IsotonicRegression(self):
        # disable at this moment
        return
        """
        data = np.abs(np.random.randn(100))
        data = data.cumsum()
        df = pdml.ModelFrame(np.arange(len(data)), target=data)

        mod1 = df.isotonic.IsotonicRegression()
        mod2 = isotonic.IsotonicRegression()

        # df.fit(mod1)
        # mod2.fit(iris.data)

        # result = df.predict(mod1)
        # expected = mod2.predict(iris.data)

        # self.assertIsInstance(result, pdml.ModelSeries)
        # self.assert_numpy_array_almost_equal(result.values, expected)
        """ 
Example #2
Source File: Variogram.py    From scikit-gstat with MIT License 5 votes vote down vote up
def _build_harmonized_model(self):
        x = self.bins
        y = self.experimental

        _x = x[~np.isnan(y)]
        _y = y[~np.isnan(y)]
        regr = IsotonicRegression(increasing=True).fit(_x, _y)

        # create the model function
        def harmonize(x):
            """Monotonized Variogram

            Return the isotonic harmonized experimental variogram.
            This means, the experimental variogram is monotonic after harmonization.

            The harmonization is done using following Hinterding (2003) using 
            the PAVA algorithm (Barlow and Bartholomew, 1972).

            Returns
            -------
            gamma : numpy.ndarray
                monotonized experimental variogram
            
            References
            ----------
            Barlow, R., D. Bartholomew, et al. (1972): Statistical Interference Under Order Restrictions.
                John Wiley and Sons, New York.
            Hiterding, A. (2003): Entwicklung hybrider Interpolationsverfahren für den automatisierten Betrieb am
                Beispiel meteorologischer Größen. Dissertation, Institut für Geoinformatik, Westphälische
                Wilhelms-Universität Münster, IfGIprints, Münster. ISBN: 3-936616-12-4

            """

            if isinstance(x, (list, tuple, np.ndarray)):
                return regr.transform(x)
            else:
                return regr.transform([x])

        return harmonize 
Example #3
Source File: test_isotonic.py    From pandas-ml with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.isotonic.IsotonicRegression, isotonic.IsotonicRegression) 
Example #4
Source File: classification.py    From metropolis-hastings-gans with Apache License 2.0 5 votes vote down vote up
def __init__(self):
        self.clf = IsotonicRegression(y_min=0.0, y_max=1.0,
                                      out_of_bounds='clip') 
Example #5
Source File: after_treat.py    From CO2MPAS-TA with European Union Public License 1.1 5 votes vote down vote up
def calibrate_after_treatment_speed_model(
        times, after_treatment_warm_up_phases, after_treatment_speeds_delta,
        is_hybrid=False):
    """
    Calibrates the engine after treatment speed model.

    :param times:
        Time vector [s].
    :type times: numpy.array

    :param after_treatment_warm_up_phases:
        Phases when engine speed is affected by the after treatment warm up [-].
    :type after_treatment_warm_up_phases: numpy.array

    :param after_treatment_speeds_delta:
        Engine speed delta due to the after treatment warm up [RPM].
    :type after_treatment_speeds_delta: numpy.array

    :param is_hybrid:
        Is the vehicle hybrid?
    :type is_hybrid: bool

    :return:
        After treatment speed model.
    :rtype: function
    """
    if after_treatment_warm_up_phases.any():
        from sklearn.isotonic import IsotonicRegression
        x, y, model = [], [], IsotonicRegression(increasing=False)
        for i, j in co2_utl.index_phases(after_treatment_warm_up_phases):
            x.extend(times[i:j + 1] - (times[i] if is_hybrid else 0.0))
            y.extend(after_treatment_speeds_delta[i:j + 1])
        # noinspection PyUnresolvedReferences
        return model.fit(x, y).predict 
Example #6
Source File: after_treat.py    From CO2MPAS-TA with European Union Public License 1.1 5 votes vote down vote up
def calibrate_after_treatment_power_model(
        times, after_treatment_warm_up_phases, engine_powers_out,
        is_hybrid=False):
    """
    Calibrates the engine after treatment speed model.

    :param times:
        Time vector [s].
    :type times: numpy.array

    :param after_treatment_warm_up_phases:
        Phases when engine speed is affected by the after treatment warm up [-].
    :type after_treatment_warm_up_phases: numpy.array

    :param engine_powers_out:
        Engine power vector [kW].
    :type engine_powers_out: numpy.array

    :param is_hybrid:
        Is the vehicle hybrid?
    :type is_hybrid: bool

    :return:
        After treatment speed model.
    :rtype: function
    """
    if after_treatment_warm_up_phases.any():
        from sklearn.isotonic import IsotonicRegression
        x, y = [], []
        for i, j in co2_utl.index_phases(after_treatment_warm_up_phases):
            t = times[i:j + 1] - (times[i] if is_hybrid else 0.0)
            x.extend(t)
            y.extend(co2_utl.median_filter(t, engine_powers_out[i:j + 1], 4))
        # noinspection PyUnresolvedReferences
        return IsotonicRegression().fit(x, np.maximum(0, y)).predict 
Example #7
Source File: gspv.py    From CO2MPAS-TA with European Union Public License 1.1 5 votes vote down vote up
def _gspv_interpolate_cloud(powers, velocities):
    from sklearn.isotonic import IsotonicRegression
    from scipy.interpolate import InterpolatedUnivariateSpline
    regressor = IsotonicRegression()
    regressor.fit(powers, velocities)
    x = np.linspace(min(powers), max(powers))
    y = regressor.predict(x)
    return InterpolatedUnivariateSpline(x, y, k=1, ext=3)


# noinspection PyMissingOrEmptyDocstring,PyPep8Naming 
Example #8
Source File: calibration.py    From carl with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def fit(self, T, y, sample_weight=None):
        """Fit using `T`, `y` as training data.

        Parameters
        ----------
        * `T` [array-like, shape=(n_samples,)]:
            Training data.

        * `y` [array-like, shape=(n_samples,)]:
            Training target.

        * `sample_weight` [array-like, shape=(n_samples,), optional]:
            Weights. If set to None, all weights will be set to 1.

        Returns
        -------
        * `self` [object]:
            `self`.

        Notes
        -----
        `T` is stored for future use, as `predict` needs T to interpolate
        new input data.
        """
        # Check input
        T = column_or_1d(T)

        # Fit isotonic regression
        self.ir_ = IsotonicRegression(y_min=self.y_min,
                                      y_max=self.y_max,
                                      increasing=self.increasing,
                                      out_of_bounds="clip")
        self.ir_.fit(T, y, sample_weight=sample_weight)

        # Interpolators
        if self.interpolation:
            p = self.ir_.transform(T)

            change_mask1 = (p - np.roll(p, 1)) > 0
            change_mask2 = np.roll(change_mask1, -1)
            change_mask1[0] = True
            change_mask1[-1] = True
            change_mask2[0] = True
            change_mask2[-1] = True

            self.interp1_ = interp1d(T[change_mask1], p[change_mask1],
                                     bounds_error=False,
                                     fill_value=(0., 1.))
            self.interp2_ = interp1d(T[change_mask2], p[change_mask2],
                                     bounds_error=False,
                                     fill_value=(0., 1.))

        return self 
Example #9
Source File: calibration.py    From fklearn with Apache License 2.0 4 votes vote down vote up
def isotonic_calibration_learner(df: pd.DataFrame,
                                 target_column: str = "target",
                                 prediction_column: str = "prediction",
                                 output_column: str = "calibrated_prediction",
                                 y_min: float = 0.0,
                                 y_max: float = 1.0) -> LearnerReturnType:
    """
    Fits a single feature isotonic regression to the dataset.

    Parameters
    ----------

    df : pandas.DataFrame
        A Pandas' DataFrame with features and target columns.
        The model will be trained to predict the target column
        from the features.

    target_column : str
        The name of the column in `df` that should be used as target for the model.
        This column should be binary, since this is a classification model.

    prediction_column : str
        The name of the column with the uncalibrated predictions from the model.

    output_column : str
        The name of the column with the calibrated predictions from the model.

    y_min: float
        Lower bound of Isotonic Regression

    y_max: float
        Upper bound of Isotonic Regression

    """

    clf = IsotonicRegression(y_min=y_min, y_max=y_max, out_of_bounds='clip')

    clf.fit(df[prediction_column], df[target_column])

    def p(new_df: pd.DataFrame) -> pd.DataFrame:
        return new_df.assign(**{output_column: clf.predict(new_df[prediction_column])})

    p.__doc__ = learner_pred_fn_docstring("isotonic_calibration_learner")

    log = {'isotonic_calibration_learner': {
        'output_column': output_column,
        'target_column': target_column,
        'prediction_column': prediction_column,
        'package': "sklearn",
        'package_version': sklearn.__version__,
        'training_samples': len(df)},
        'object': clf}

    return p, p(df), log