Python tensorflow.python.framework.ops.get_from_proto_function() Examples
The following are 2
code examples of tensorflow.python.framework.ops.get_from_proto_function().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.framework.ops
, or try the search function
.
Example #1
Source File: in_graph_parallel.py From parallax with Apache License 2.0 | 4 votes |
def _handle_collection_def(multi_gpu_meta_graph_def, op_names_to_replicate, num_replicas): allow_bytes_list_keys = [tf.GraphKeys.QUEUE_RUNNERS, tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.TRAINABLE_VARIABLES, tf.GraphKeys.MOVING_AVERAGE_VARIABLES, tf.GraphKeys.LOCAL_VARIABLES, tf.GraphKeys.MODEL_VARIABLES, tf.GraphKeys.GRADIENTS_INFO, tf.GraphKeys.GLOBAL_STEP] keys_to_remove = [] for key, col_def in multi_gpu_meta_graph_def.collection_def.items(): kind = col_def.WhichOneof("kind") # Update node_list collections (e.g., GLOBAL_STEP, TRAIN_OP, UPDATE_OP, # LOSSES, ...) if kind == 'node_list': new_col_def = get_new_col_def_of_node_list( col_def, op_names_to_replicate, num_replicas) multi_gpu_meta_graph_def.collection_def[key].Clear() multi_gpu_meta_graph_def.collection_def[key].CopyFrom(new_col_def) elif kind == 'bytes_list': if ops.get_from_proto_function(key): # Collections in allow_bytes_list_keys will be handled # explicitly below # (e.g., QUEUE_RUNNERS, LOCAL_VARIABLES, ...) if key in allow_bytes_list_keys: continue # Remove unhandled collections (e.g., COND_CONTEXT) # TODO: Handle all protos in tf.GraphKeys else: keys_to_remove.append(key) # Keep collections without proto function # (e.g., user defined string) else: continue else: raise RuntimeError("Should not reach here") for key in keys_to_remove: del multi_gpu_meta_graph_def.collection_def[key] # Update QUEUE_RUNNERS and LOCAL_VARIABLES collection update_queue_runners(multi_gpu_meta_graph_def, op_names_to_replicate, num_replicas) update_local_variables(multi_gpu_meta_graph_def, op_names_to_replicate, num_replicas) update_shard_info_for_in_graph(multi_gpu_meta_graph_def, num_replicas)
Example #2
Source File: in_graph_parallel.py From parallax with Apache License 2.0 | 4 votes |
def _handle_collection_def(multi_gpu_meta_graph_def, op_names_to_replicate, num_replicas): allow_bytes_list_keys = [tf.GraphKeys.QUEUE_RUNNERS, tf.GraphKeys.GLOBAL_VARIABLES, tf.GraphKeys.TRAINABLE_VARIABLES, tf.GraphKeys.MOVING_AVERAGE_VARIABLES, tf.GraphKeys.LOCAL_VARIABLES, tf.GraphKeys.MODEL_VARIABLES, tf.GraphKeys.GRADIENTS_INFO, tf.GraphKeys.GLOBAL_STEP] keys_to_remove = [] for key, col_def in multi_gpu_meta_graph_def.collection_def.items(): kind = col_def.WhichOneof("kind") # Update node_list collections (e.g., GLOBAL_STEP, TRAIN_OP, UPDATE_OP, # LOSSES, ...) if kind == 'node_list': new_col_def = get_new_col_def_of_node_list( col_def, op_names_to_replicate, num_replicas) multi_gpu_meta_graph_def.collection_def[key].Clear() multi_gpu_meta_graph_def.collection_def[key].CopyFrom(new_col_def) elif kind == 'bytes_list': if ops.get_from_proto_function(key): # Collections in allow_bytes_list_keys will be handled # explicitly below # (e.g., QUEUE_RUNNERS, LOCAL_VARIABLES, ...) if key in allow_bytes_list_keys: continue # Remove unhandled collections (e.g., COND_CONTEXT) # TODO: Handle all protos in tf.GraphKeys else: keys_to_remove.append(key) # Keep collections without proto function # (e.g., user defined string) else: continue else: raise RuntimeError("Should not reach here") for key in keys_to_remove: del multi_gpu_meta_graph_def.collection_def[key] # Update QUEUE_RUNNERS and LOCAL_VARIABLES collection update_queue_runners(multi_gpu_meta_graph_def, op_names_to_replicate, num_replicas) update_local_variables(multi_gpu_meta_graph_def, op_names_to_replicate, num_replicas) update_shard_info_for_in_graph(multi_gpu_meta_graph_def, num_replicas)