Python mmdet.ops.DeformConv() Examples

The following are 30 code examples of mmdet.ops.DeformConv(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module mmdet.ops , or try the search function .
Example #1
Source File: guided_anchor_head.py    From mmdetection with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #2
Source File: guided_anchor_head.py    From ttfnet with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #3
Source File: fovea_head.py    From ttfnet with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAlign, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            4, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #4
Source File: guided_anchor_head.py    From CenterNet with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #5
Source File: guided_anchor_head.py    From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #6
Source File: guided_anchor_head.py    From Cascade-RPN with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #7
Source File: fovea_head.py    From Cascade-RPN with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAlign, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            4, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #8
Source File: guided_anchor_head.py    From FoveaBox with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #9
Source File: fovea_head.py    From FoveaBox with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAlign, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(4,
                                     deformable_groups * offset_channels,
                                     1,
                                     bias=False)
        self.conv_adaption = DeformConv(in_channels,
                                        out_channels,
                                        kernel_size=kernel_size,
                                        padding=(kernel_size - 1) // 2,
                                        deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #10
Source File: guided_anchor_head.py    From Libra_R-CNN with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #11
Source File: guided_anchor_head.py    From IoU-Uniform-R-CNN with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #12
Source File: fovea_head.py    From IoU-Uniform-R-CNN with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAlign, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            4, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #13
Source File: guided_anchor_head.py    From RDSNet with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #14
Source File: fovea_head.py    From mmdetection with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAlign, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            4, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #15
Source File: guided_anchor_head.py    From kaggle-kuzushiji-recognition with MIT License 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #16
Source File: guided_anchor_head.py    From AerialDetection with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(2,
                                     deformable_groups * offset_channels,
                                     1,
                                     bias=False)
        self.conv_adaption = DeformConv(in_channels,
                                        out_channels,
                                        kernel_size=kernel_size,
                                        padding=(kernel_size - 1) // 2,
                                        deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #17
Source File: fovea_head.py    From kaggle-kuzushiji-recognition with MIT License 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAlign, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            4, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #18
Source File: guided_anchor_head.py    From PolarMask with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #19
Source File: guided_anchor_head.py    From mmdetection_with_SENet154 with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(2,
                                     deformable_groups * offset_channels,
                                     1,
                                     bias=False)
        self.conv_adaption = DeformConv(in_channels,
                                        out_channels,
                                        kernel_size=kernel_size,
                                        padding=(kernel_size - 1) // 2,
                                        deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #20
Source File: guided_anchor_head.py    From mmdetection-annotated with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #21
Source File: guided_anchor_head.py    From GCNet with Apache License 2.0 6 votes vote down vote up
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
Example #22
Source File: reppoints_head.py    From ttfnet with Apache License 2.0 5 votes vote down vote up
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv(self.feat_channels,
                                             self.point_feat_channels,
                                             self.dcn_kernel, 1, self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
                                                    self.point_feat_channels,
                                                    self.dcn_kernel, 1,
                                                    self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0) 
Example #23
Source File: reppoints_head.py    From Feature-Selective-Anchor-Free-Module-for-Single-Shot-Object-Detection with Apache License 2.0 5 votes vote down vote up
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv(self.feat_channels,
                                             self.point_feat_channels,
                                             self.dcn_kernel, 1, self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
                                                    self.point_feat_channels,
                                                    self.dcn_kernel, 1,
                                                    self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0) 
Example #24
Source File: reppoints_head.py    From Cascade-RPN with Apache License 2.0 5 votes vote down vote up
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv(self.feat_channels,
                                             self.point_feat_channels,
                                             self.dcn_kernel, 1, self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
                                                    self.point_feat_channels,
                                                    self.dcn_kernel, 1,
                                                    self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0) 
Example #25
Source File: cascade_rpn_head.py    From Cascade-RPN with Apache License 2.0 5 votes vote down vote up
def __init__(self, in_channels, out_channels, dilation=1, adapt=True):
        super(AdaptiveConv, self).__init__()
        self.adapt = adapt
        if self.adapt:
            assert dilation == 1
            self.conv = DeformConv(in_channels, out_channels, 3, padding=1)
        else:  # fallback to normal Conv2d
            self.conv = nn.Conv2d(
                in_channels,
                out_channels,
                3,
                padding=dilation,
                dilation=dilation) 
Example #26
Source File: reppoints_head.py    From RepPoints with MIT License 5 votes vote down vote up
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv(self.feat_channels,
                                             self.point_feat_channels,
                                             self.dcn_kernel, 1, self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
                                                    self.point_feat_channels,
                                                    self.dcn_kernel, 1,
                                                    self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0) 
Example #27
Source File: reppoints_head.py    From IoU-Uniform-R-CNN with Apache License 2.0 5 votes vote down vote up
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv(self.feat_channels,
                                             self.point_feat_channels,
                                             self.dcn_kernel, 1, self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
                                                    self.point_feat_channels,
                                                    self.dcn_kernel, 1,
                                                    self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0) 
Example #28
Source File: reppoints_head.py    From kaggle-kuzushiji-recognition with MIT License 5 votes vote down vote up
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv(self.feat_channels,
                                             self.point_feat_channels,
                                             self.dcn_kernel, 1, self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
                                                    self.point_feat_channels,
                                                    self.dcn_kernel, 1,
                                                    self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0) 
Example #29
Source File: reppoints_head.py    From RDSNet with Apache License 2.0 5 votes vote down vote up
def _init_layers(self):
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv(self.feat_channels,
                                             self.point_feat_channels,
                                             self.dcn_kernel, 1, self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
                                                    self.point_feat_channels,
                                                    self.dcn_kernel, 1,
                                                    self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0) 
Example #30
Source File: reppoints_head.py    From mmdetection with Apache License 2.0 4 votes vote down vote up
def _init_layers(self):
        """Initialize layers of the head."""
        self.relu = nn.ReLU(inplace=True)
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i in range(self.stacked_convs):
            chn = self.in_channels if i == 0 else self.feat_channels
            self.cls_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
            self.reg_convs.append(
                ConvModule(
                    chn,
                    self.feat_channels,
                    3,
                    stride=1,
                    padding=1,
                    conv_cfg=self.conv_cfg,
                    norm_cfg=self.norm_cfg))
        pts_out_dim = 4 if self.use_grid_points else 2 * self.num_points
        self.reppoints_cls_conv = DeformConv(self.feat_channels,
                                             self.point_feat_channels,
                                             self.dcn_kernel, 1, self.dcn_pad)
        self.reppoints_cls_out = nn.Conv2d(self.point_feat_channels,
                                           self.cls_out_channels, 1, 1, 0)
        self.reppoints_pts_init_conv = nn.Conv2d(self.feat_channels,
                                                 self.point_feat_channels, 3,
                                                 1, 1)
        self.reppoints_pts_init_out = nn.Conv2d(self.point_feat_channels,
                                                pts_out_dim, 1, 1, 0)
        self.reppoints_pts_refine_conv = DeformConv(self.feat_channels,
                                                    self.point_feat_channels,
                                                    self.dcn_kernel, 1,
                                                    self.dcn_pad)
        self.reppoints_pts_refine_out = nn.Conv2d(self.point_feat_channels,
                                                  pts_out_dim, 1, 1, 0)