Python provider.getDataFiles() Examples
The following are 7
code examples of provider.getDataFiles().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
provider
, or try the search function
.
Example #1
Source File: config.py From AlignNet-3D with BSD 3-Clause "New" or "Revised" License | 6 votes |
def load_config(filename): global globalConfig assert filename.endswith('.json') name = os.path.basename(filename)[:-5] with open(filename, 'r') as handle: dump_to_namespace(configGlobal, json.load(handle)) configGlobal.__dict__["name"] = name configGlobal.data.__dict__["basename"] = os.path.basename(configGlobal.data.basepath) configGlobal.logging.__dict__["logdir"] = configGlobal.logging.basedir + f'/{name}' if configGlobal.evaluation.has('special'): if configGlobal.evaluation.special.mode == 'icp': configGlobal.logging.__dict__["logdir"] = configGlobal.logging.basedir + f'/icp_{configGlobal.data.basename}/{name}' TRAIN_INDICES = provider.getDataFiles(f'{configGlobal.data.basepath}/split/train.txt') VAL_INDICES = provider.getDataFiles(f'{configGlobal.data.basepath}/split/val.txt') configGlobal.data.__dict__["ntrain"] = len(TRAIN_INDICES) configGlobal.data.__dict__["nval"] = len(VAL_INDICES)
Example #2
Source File: generate_dataset.py From pointnet-registration-framework with MIT License | 5 votes |
def getDataFiles(self, list_filename): return [line.rstrip() for line in open(list_filename)]
Example #3
Source File: estimate_mean_ins_size.py From ASIS with MIT License | 5 votes |
def estimate(area): LOG_DIR = 'log{}'.format(area) num_classes = 13 file_path = "data/train_hdf5_file_list_woArea{}.txt".format(area) train_file_list = provider.getDataFiles(file_path) mean_ins_size = np.zeros(num_classes) ptsnum_in_gt = [[] for itmp in range(num_classes)] train_data = [] train_group = [] train_sem = [] for h5_filename in train_file_list: cur_data, cur_group, _, cur_sem = provider.loadDataFile_with_groupseglabel_stanfordindoor(h5_filename) cur_data = np.reshape(cur_data, [-1, cur_data.shape[-1]]) cur_group = np.reshape(cur_group, [-1]) cur_sem = np.reshape(cur_sem, [-1]) un = np.unique(cur_group) for ig, g in enumerate(un): tmp = (cur_group == g) sem_seg_g = int(stats.mode(cur_sem[tmp])[0]) ptsnum_in_gt[sem_seg_g].append(np.sum(tmp)) for idx in range(num_classes): mean_ins_size[idx] = np.mean(ptsnum_in_gt[idx]).astype(np.int) print(mean_ins_size) np.savetxt(os.path.join(LOG_DIR, 'mean_ins_size.txt'),mean_ins_size)
Example #4
Source File: ply_dataset.py From chainer-pointnet with MIT License | 5 votes |
def get_train_dataset(num_point=1024): print('get train num_point ', num_point) train_files = provider.getDataFiles( os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt')) return ConcatenatedDataset( *(PlyDataset(filepath, num_point=num_point, augment=True) for filepath in train_files))
Example #5
Source File: ply_dataset.py From chainer-pointnet with MIT License | 5 votes |
def get_test_dataset(num_point=1024): print('get test num_point ', num_point) test_files = provider.getDataFiles( os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt')) return ConcatenatedDataset( *(PlyDataset(filepath, num_point=num_point, augment=False) for filepath in test_files))
Example #6
Source File: generate_dataset.py From pcrnet with MIT License | 5 votes |
def getDataFiles(self, list_filename): return [line.rstrip() for line in open(list_filename)]
Example #7
Source File: visualization.py From scanobjectnn with MIT License | 4 votes |
def visualize_fv_pc_clas(): num_points = 1024 n_classes = 40 clas = 'person' #Create new gaussian subdev = 5 variance = 0.04 export = False display = True exp_path = '/home/itzikbs/PycharmProjects/fisherpointnet/paper_images/' shape_names = provider.getDataFiles( \ os.path.join(BASE_DIR, 'data/modelnet' + str(n_classes) + '_ply_hdf5_2048/shape_names.txt')) shape_dict = {shape_names[i]: i for i in range(len(shape_names))} gmm = utils.get_grid_gmm(subdivisions=[subdev, subdev, subdev], variance=variance) # compute fv w = tf.constant(gmm.weights_, dtype=tf.float32) mu = tf.constant(gmm.means_, dtype=tf.float32) sigma = tf.constant(gmm.covariances_, dtype=tf.float32) for clas in shape_dict: points = provider.load_single_model_class(clas=clas, ind=0, test_train='train', file_idxs=0, num_points=1024, n_classes=n_classes) points = np.expand_dims(points,0) points_tensor = tf.constant(points, dtype=tf.float32) # convert points into a tensor fv_tensor = tf_util.get_fv_minmax(points_tensor, w, mu, sigma, flatten=False) sess = tf_util.get_session(2) with sess: fv = fv_tensor.eval() # # visualize_single_fv_with_pc(fv_train, points, label_title=clas, # fig_title='fv_pc', type='paper', pos=[750, 800, 0, 0], export=export, # filename=BASE_DIR + '/paper_images/fv_pc_' + clas) visualize_fv(fv, gmm, label_title=[clas], max_n_images=5, normalization=True, export=export, display=display, filename=exp_path + clas+'_fv', n_scales=1, type='none', fig_title='Figure') visualize_pc(points, label_title=clas, fig_title='figure', export=export, filename=exp_path +clas+'_pc') plt.close('all') #plt.show()