Python tensorflow.python.ops.data_flow_ops.dynamic_stitch() Examples
The following are 9
code examples of tensorflow.python.ops.data_flow_ops.dynamic_stitch().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.data_flow_ops
, or try the search function
.
Example #1
Source File: data_flow_grad.py From lambda-packs with MIT License | 5 votes |
def _DynamicPartitionGrads(op, *grads): """Gradients for DynamicPartition.""" data = op.inputs[0] indices = op.inputs[1] num_partitions = op.get_attr("num_partitions") prefix_shape = array_ops.shape(indices) original_indices = array_ops.reshape( math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape) partitioned_indices = data_flow_ops.dynamic_partition( original_indices, indices, num_partitions) reconstructed = data_flow_ops.dynamic_stitch(partitioned_indices, grads) reconstructed = array_ops.reshape(reconstructed, array_ops.shape(data)) return [reconstructed, None]
Example #2
Source File: sharded_mutable_dense_hashtable.py From lambda-packs with MIT License | 5 votes |
def lookup(self, keys, name=None): if keys.dtype != self._key_dtype: raise TypeError('Signature mismatch. Keys must be dtype %s, got %s.' % (self._key_dtype, keys.dtype)) self._check_keys(keys) num_shards = self._num_shards if num_shards == 1: return self._table_shards[0].lookup(keys, name=name) shard_indices = self._shard_indices(keys) # TODO(andreasst): support 'keys' that are not vectors key_shards = data_flow_ops.dynamic_partition(keys, shard_indices, num_shards) value_shards = [ self._table_shards[i].lookup(key_shards[i], name=name) for i in range(num_shards) ] num_keys = keys.get_shape().dims[0] original_indices = math_ops.range(num_keys) partitioned_indices = data_flow_ops.dynamic_partition(original_indices, shard_indices, num_shards) result = data_flow_ops.dynamic_stitch(partitioned_indices, value_shards) result.set_shape( tensor_shape.TensorShape([num_keys]).concatenate(self._value_shape)) return result
Example #3
Source File: data_flow_grad.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _DynamicPartitionGrads(op, *grads): """Gradients for DynamicPartition.""" data = op.inputs[0] indices = op.inputs[1] num_partitions = op.get_attr("num_partitions") prefix_shape = array_ops.shape(indices) original_indices = array_ops.reshape( math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape) partitioned_indices = data_flow_ops.dynamic_partition( original_indices, indices, num_partitions) reconstructed = data_flow_ops.dynamic_stitch(partitioned_indices, grads) reconstructed = array_ops.reshape(reconstructed, array_ops.shape(data)) return [reconstructed, None]
Example #4
Source File: sharded_mutable_dense_hashtable.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def lookup(self, keys, name=None): if keys.dtype != self._key_dtype: raise TypeError('Signature mismatch. Keys must be dtype %s, got %s.' % (self._key_dtype, keys.dtype)) self._check_keys(keys) num_shards = self._num_shards if num_shards == 1: return self._table_shards[0].lookup(keys, name=name) shard_indices = self._shard_indices(keys) # TODO(andreasst): support 'keys' that are not vectors key_shards = data_flow_ops.dynamic_partition(keys, shard_indices, num_shards) value_shards = [ self._table_shards[i].lookup(key_shards[i], name=name) for i in range(num_shards) ] num_keys = keys.get_shape().dims[0] original_indices = math_ops.range(num_keys) partitioned_indices = data_flow_ops.dynamic_partition(original_indices, shard_indices, num_shards) result = data_flow_ops.dynamic_stitch(partitioned_indices, value_shards) result.set_shape( tensor_shape.TensorShape([num_keys]).concatenate(self._value_shape)) return result
Example #5
Source File: data_flow_grad.py From deep_image_model with Apache License 2.0 | 5 votes |
def _DynamicPartitionGrads(op, *grads): """Gradients for DynamicPartition.""" data = op.inputs[0] indices = op.inputs[1] num_partitions = op.get_attr("num_partitions") prefix_shape = array_ops.shape(indices) original_indices = array_ops.reshape( math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape) partitioned_indices = data_flow_ops.dynamic_partition( original_indices, indices, num_partitions) reconstructed = data_flow_ops.dynamic_stitch(partitioned_indices, grads) reconstructed = array_ops.reshape(reconstructed, array_ops.shape(data)) return [reconstructed, None]
Example #6
Source File: sdca_ops.py From deep_image_model with Apache License 2.0 | 5 votes |
def lookup(self, keys, name=None): if keys.dtype != self._key_dtype: raise TypeError('Signature mismatch. Keys must be dtype %s, got %s.' % (self._key_dtype, keys.dtype)) self._check_keys(keys) num_shards = self._num_shards if num_shards == 1: return self._table_shards[0].lookup(keys, name=name) shard_indices = self._shard_indices(keys) # TODO(andreasst): support 'keys' that are not vectors key_shards = data_flow_ops.dynamic_partition(keys, shard_indices, num_shards) value_shards = [ self._table_shards[i].lookup(key_shards[i], name=name) for i in range(num_shards) ] num_keys = keys.get_shape().dims[0] original_indices = math_ops.range(num_keys) partitioned_indices = data_flow_ops.dynamic_partition(original_indices, shard_indices, num_shards) result = data_flow_ops.dynamic_stitch(partitioned_indices, value_shards) result.set_shape( tensor_shape.TensorShape([num_keys]).concatenate(self._value_shape)) return result
Example #7
Source File: data_flow_grad.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _DynamicPartitionGrads(op, *grads): """Gradients for DynamicPartition.""" data = op.inputs[0] indices = op.inputs[1] num_partitions = op.get_attr("num_partitions") prefix_shape = array_ops.shape(indices) original_indices = array_ops.reshape( math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape) partitioned_indices = data_flow_ops.dynamic_partition( original_indices, indices, num_partitions) reconstructed = data_flow_ops.dynamic_stitch(partitioned_indices, grads) reconstructed = array_ops.reshape(reconstructed, array_ops.shape(data)) return [reconstructed, None]
Example #8
Source File: data_flow_grad.py From keras-lambda with MIT License | 5 votes |
def _DynamicPartitionGrads(op, *grads): """Gradients for DynamicPartition.""" data = op.inputs[0] indices = op.inputs[1] num_partitions = op.get_attr("num_partitions") prefix_shape = array_ops.shape(indices) original_indices = array_ops.reshape( math_ops.range(math_ops.reduce_prod(prefix_shape)), prefix_shape) partitioned_indices = data_flow_ops.dynamic_partition( original_indices, indices, num_partitions) reconstructed = data_flow_ops.dynamic_stitch(partitioned_indices, grads) reconstructed = array_ops.reshape(reconstructed, array_ops.shape(data)) return [reconstructed, None]
Example #9
Source File: sharded_mutable_dense_hashtable.py From keras-lambda with MIT License | 5 votes |
def lookup(self, keys, name=None): if keys.dtype != self._key_dtype: raise TypeError('Signature mismatch. Keys must be dtype %s, got %s.' % (self._key_dtype, keys.dtype)) self._check_keys(keys) num_shards = self._num_shards if num_shards == 1: return self._table_shards[0].lookup(keys, name=name) shard_indices = self._shard_indices(keys) # TODO(andreasst): support 'keys' that are not vectors key_shards = data_flow_ops.dynamic_partition(keys, shard_indices, num_shards) value_shards = [ self._table_shards[i].lookup(key_shards[i], name=name) for i in range(num_shards) ] num_keys = keys.get_shape().dims[0] original_indices = math_ops.range(num_keys) partitioned_indices = data_flow_ops.dynamic_partition(original_indices, shard_indices, num_shards) result = data_flow_ops.dynamic_stitch(partitioned_indices, value_shards) result.set_shape( tensor_shape.TensorShape([num_keys]).concatenate(self._value_shape)) return result