Python tensorflow.python.keras.layers.BatchNormalization() Examples

The following are 21 code examples of tensorflow.python.keras.layers.BatchNormalization(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.keras.layers , or try the search function .
Example #1
Source File: resnet50.py    From ImageAI with MIT License 6 votes vote down vote up
def resnet_first_block_first_module(input, channel_depth):
    residual_input = input
    stride = 1

    residual_input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same")(residual_input)
    residual_input = BatchNormalization()(residual_input)

    input = Conv2D(int(channel_depth/4), kernel_size=1, strides=stride, padding="same")(input)
    input = BatchNormalization()(input)
    input = Activation("relu")(input)

    input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=stride, padding="same")(input)
    input = BatchNormalization()(input)
    input = Activation("relu")(input)

    input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same")(input)
    input = BatchNormalization()(input)

    input = add([input, residual_input])
    input = Activation("relu")(input)

    return input 
Example #2
Source File: resnet50.py    From ImageAI with MIT License 6 votes vote down vote up
def resnet_module(input, channel_depth, strided_pool=False ):
    residual_input = input
    stride = 1

    if(strided_pool):
        stride = 2
        residual_input = Conv2D(channel_depth, kernel_size=1, strides=stride, padding="same")(residual_input)
        residual_input = BatchNormalization()(residual_input)

    input = Conv2D(int(channel_depth/4), kernel_size=1, strides=stride, padding="same")(input)
    input = BatchNormalization()(input)
    input = Activation("relu")(input)

    input = Conv2D(int(channel_depth / 4), kernel_size=3, strides=1, padding="same")(input)
    input = BatchNormalization()(input)
    input = Activation("relu")(input)

    input = Conv2D(channel_depth, kernel_size=1, strides=1, padding="same")(input)
    input = BatchNormalization()(input)

    input = add([input, residual_input])
    input = Activation("relu")(input)

    return input 
Example #3
Source File: densenet.py    From ImageAI with MIT License 6 votes vote down vote up
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
    Args:
        ip: keras tensor
        nb_filter: number of filters
        compression: calculated as 1 - reduction. Reduces the number of feature maps
                    in the transition block.
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)
    x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
               kernel_regularizer=l2(weight_decay))(x)
    x = AveragePooling2D((2, 2), strides=(2, 2))(x)

    return x 
Example #4
Source File: rnn.py    From cxplain with MIT License 6 votes vote down vote up
def build(self, input_layer):
        last_layer = input_layer
        input_shape = K.int_shape(input_layer)

        if self.with_embedding:
            if input_shape[-1] != 1:
                raise ValueError("Only one feature (the index) can be used with embeddings, "
                                 "i.e. the input shape should be (num_samples, length, 1). "
                                 "The actual shape was: " + str(input_shape))

            last_layer = Lambda(lambda x: K.squeeze(x, axis=-1),
                                output_shape=K.int_shape(last_layer)[:-1])(last_layer)  # Remove feature dimension.
            last_layer = Embedding(self.embedding_size, self.embedding_dimension,
                                   input_length=input_shape[-2])(last_layer)

        for _ in range(self.num_layers):
            last_layer = Dense(self.num_units, activation=self.activation)(last_layer)
            if self.with_bn:
                last_layer = BatchNormalization()(last_layer)
            if not np.isclose(self.p_dropout, 0):
                last_layer = Dropout(self.p_dropout)(last_layer)
        return last_layer 
Example #5
Source File: ops.py    From progressive-neural-architecture-search with MIT License 5 votes vote down vote up
def __init__(self, filters, kernel, strides):
        '''
        Constructs a Spatial Convolution - Batch Normalization - Relu block.
        '''
        super(Convolution, self).__init__()

        self.conv = Conv2D(filters, kernel, strides=strides, padding='same',
                           kernel_initializer='he_uniform')
        self.bn = BatchNormalization() 
Example #6
Source File: ops.py    From progressive-neural-architecture-search with MIT License 5 votes vote down vote up
def __init__(self, filters, kernel, strides):
        '''
        Constructs a Seperable Convolution - Batch Normalization - Relu block.
        '''
        super(SeperableConvolution, self).__init__()

        self.conv = SeparableConv2D(filters, kernel, strides=strides, padding='same',
                                    kernel_initializer='he_uniform')
        self.bn = BatchNormalization() 
Example #7
Source File: RTSNNet.py    From alpha-zero-general with MIT License 5 votes vote down vote up
def __init__(self, game, encoder):
        """
        NNet model, copied from Othello NNet, with reduced fully connected layers fc1 and fc2 and reduced nnet_args.num_channels
        :param game: game configuration
        :param encoder: Encoder, used to encode game boards
        """
        from rts.src.config_class import CONFIG

        # game params
        self.board_x, self.board_y, num_encoders = game.getBoardSize()
        self.action_size = game.getActionSize()

        """
        num_encoders = CONFIG.nnet_args.encoder.num_encoders
        """
        num_encoders = encoder.num_encoders

        # Neural Net
        self.input_boards = Input(shape=(self.board_x, self.board_y, num_encoders))  # s: batch_size x board_x x board_y x num_encoders

        x_image = Reshape((self.board_x, self.board_y, num_encoders))(self.input_boards)  # batch_size  x board_x x board_y x num_encoders
        h_conv1 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(x_image)))  # batch_size  x board_x x board_y x num_channels
        h_conv2 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='same', use_bias=False)(h_conv1)))  # batch_size  x board_x x board_y x num_channels
        h_conv3 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv2)))  # batch_size  x (board_x-2) x (board_y-2) x num_channels
        h_conv4 = Activation('relu')(BatchNormalization(axis=3)(Conv2D(CONFIG.nnet_args.num_channels, 3, padding='valid', use_bias=False)(h_conv3)))  # batch_size  x (board_x-4) x (board_y-4) x num_channels
        h_conv4_flat = Flatten()(h_conv4)
        s_fc1 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(256, use_bias=False)(h_conv4_flat))))  # batch_size x 1024
        s_fc2 = Dropout(CONFIG.nnet_args.dropout)(Activation('relu')(BatchNormalization(axis=1)(Dense(128, use_bias=False)(s_fc1))))  # batch_size x 1024
        self.pi = Dense(self.action_size, activation='softmax', name='pi')(s_fc2)  # batch_size x self.action_size
        self.v = Dense(1, activation='tanh', name='v')(s_fc2)  # batch_size x 1

        self.model = Model(inputs=self.input_boards, outputs=[self.pi, self.v])
        self.model.compile(loss=['categorical_crossentropy', 'mean_squared_error'], optimizer=Adam(CONFIG.nnet_args.lr)) 
Example #8
Source File: resnet.py    From camera-trap-classifier with MIT License 5 votes vote down vote up
def _bn_relu(input):
    """Helper to build a BN -> relu block
    """
    norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
    return Activation("relu")(norm) 
Example #9
Source File: mlp.py    From cxplain with MIT License 5 votes vote down vote up
def build(self, input_layer):
        last_layer = input_layer
        for _ in range(self.num_layers):
            last_layer = Dense(self.num_units, activation=self.activation)(last_layer)
            if self.with_bn:
                last_layer = BatchNormalization()(last_layer)
            if not np.isclose(self.p_dropout, 0):
                last_layer = Dropout(self.p_dropout)(last_layer)
        return last_layer 
Example #10
Source File: tpu_normalization.py    From BigGAN-TPU-TensorFlow with MIT License 5 votes vote down vote up
def cross_replica_batch_normalization(inputs,
                                      training=False,
                                      num_distributed_groups=1,
                                      **kwargs):
  """Functional interface for the cross replica batch normalization layer.


  For detailed information of arguments and implementation, refer to:
  https://www.tensorflow.org/api_docs/python/tf/keras/layers/BatchNormalization

  Arguments:
    inputs: Tensor input.
    training: Either a Python boolean, or a TensorFlow boolean scalar tensor
      (e.g. a placeholder). Whether to return the output in training mode
      (normalized with statistics of the current batch) or in inference mode
      (normalized with moving statistics). **NOTE**: make sure to set this
        parameter correctly, or else your training/inference will not work
        properly.
    num_distributed_groups: Number of groups to normalize in the distributed
      batch normalization. Replicas will evenly split into groups. For example,
      1 for global batch norm and -1 or None for per-replica batch norm.
    **kwargs: For passing through arguments to BatchNormalization.

  Returns:
    Output tensor.

  Raises:
    ValueError: if eager execution is enabled.
  """
  layer = BatchNormalization(
      cross_replica_average_fn=functools.partial(
          cross_replica_average, num_groups=num_distributed_groups),
      **kwargs)
  return layer.apply(inputs, training=training) 
Example #11
Source File: tpu_normalization.py    From BigGAN-TPU-TensorFlow with MIT License 5 votes vote down vote up
def _moments(self, inputs, reduction_axes, keep_dims):
    mean, variance = super(BatchNormalization, self)._moments(
        inputs, reduction_axes, keep_dims=keep_dims)
    if self.cross_replica_average_fn:
      mean = self.cross_replica_average_fn(mean)
      variance = self.cross_replica_average_fn(variance)
    return (mean, variance) 
Example #12
Source File: tpu_normalization.py    From BigGAN-TPU-TensorFlow with MIT License 5 votes vote down vote up
def __init__(self, fused=None, cross_replica_average_fn=None, **kwargs):
    super(BatchNormalization, self).__init__(**kwargs)
    self.cross_replica_average_fn = cross_replica_average_fn

    if fused and cross_replica_average_fn is not None:
      raise ValueError('fused must be `False` when sepcifying'
                       ' cross_replica_average_fn') 
Example #13
Source File: densenet.py    From ImageAI with MIT License 5 votes vote down vote up
def __conv_block(ip, nb_filter, bottleneck=False, dropout_rate=None, weight_decay=1e-4):
    ''' Apply BatchNorm, Relu, 3x3 Conv2D, optional bottleneck block and dropout
    Args:
        ip: Input keras tensor
        nb_filter: number of filters
        bottleneck: add bottleneck block
        dropout_rate: dropout rate
        weight_decay: weight decay factor
    Returns: keras tensor with batch_norm, relu and convolution2d added (optional bottleneck)
    '''
    concat_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
    x = Activation('relu')(x)

    if bottleneck:
        inter_channel = nb_filter * 4  # Obtained from https://github.com/liuzhuang13/DenseNet/blob/master/densenet.lua

        x = Conv2D(inter_channel, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
                   kernel_regularizer=l2(weight_decay))(x)
        x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
        x = Activation('relu')(x)

    x = Conv2D(nb_filter, (3, 3), kernel_initializer='he_normal', padding='same', use_bias=False)(x)
    if dropout_rate:
        x = Dropout(dropout_rate)(x)

    return x 
Example #14
Source File: resnet_model.py    From ml-on-gcp with Apache License 2.0 4 votes vote down vote up
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  # Arguments
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  # Returns
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
Example #15
Source File: resnet_cifar_model.py    From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 4 votes vote down vote up
def identity_building_block(input_tensor,
                            kernel_size,
                            filters,
                            stage,
                            block,
                            training=None):
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: current block label, used for generating layer names
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.

  Returns:
    Output tensor for the block.
  """
  filters1, filters2 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(x, training=training)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(x, training=training)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
Example #16
Source File: resnet_model.py    From tpu_models with Apache License 2.0 4 votes vote down vote up
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  Args:
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  Returns:
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size, use_bias=False,
                    padding='same',
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
Example #17
Source File: resnet_model.py    From g-tensorflow-models with Apache License 2.0 4 votes vote down vote up
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  # Arguments
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  # Returns
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1), use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
Example #18
Source File: resnet_cifar_model.py    From models with Apache License 2.0 4 votes vote down vote up
def identity_building_block(input_tensor,
                            kernel_size,
                            filters,
                            stage,
                            block,
                            training=None):
  """The identity block is the block that has no conv layer at shortcut.

  Arguments:
    input_tensor: input tensor
    kernel_size: default 3, the kernel size of
        middle conv layer at main path
    filters: list of integers, the filters of 3 conv layer at main path
    stage: integer, current stage label, used for generating layer names
    block: current block label, used for generating layer names
    training: Only used if training keras model with Estimator.  In other
      scenarios it is handled automatically.

  Returns:
    Output tensor for the block.
  """
  filters1, filters2 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2a')(x, training=training)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same', use_bias=False,
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(
      axis=bn_axis, momentum=BATCH_NORM_DECAY, epsilon=BATCH_NORM_EPSILON,
      name=bn_name_base + '2b')(x, training=training)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
Example #19
Source File: resnet_model.py    From training_results_v0.5 with Apache License 2.0 4 votes vote down vote up
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  # Arguments
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  # Returns
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same',
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
Example #20
Source File: resnet_model.py    From class-balanced-loss with MIT License 4 votes vote down vote up
def identity_block(input_tensor, kernel_size, filters, stage, block):
  """The identity block is the block that has no conv layer at shortcut.

  # Arguments
      input_tensor: input tensor
      kernel_size: default 3, the kernel size of
          middle conv layer at main path
      filters: list of integers, the filters of 3 conv layer at main path
      stage: integer, current stage label, used for generating layer names
      block: 'a','b'..., current block label, used for generating layer names

  # Returns
      Output tensor for the block.
  """
  filters1, filters2, filters3 = filters
  if backend.image_data_format() == 'channels_last':
    bn_axis = 3
  else:
    bn_axis = 1
  conv_name_base = 'res' + str(stage) + block + '_branch'
  bn_name_base = 'bn' + str(stage) + block + '_branch'

  x = layers.Conv2D(filters1, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2a')(input_tensor)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2a')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters2, kernel_size,
                    padding='same',
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2b')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2b')(x)
  x = layers.Activation('relu')(x)

  x = layers.Conv2D(filters3, (1, 1),
                    kernel_initializer='he_normal',
                    kernel_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    bias_regularizer=regularizers.l2(L2_WEIGHT_DECAY),
                    name=conv_name_base + '2c')(x)
  x = layers.BatchNormalization(axis=bn_axis,
                                momentum=BATCH_NORM_DECAY,
                                epsilon=BATCH_NORM_EPSILON,
                                name=bn_name_base + '2c')(x)

  x = layers.add([x, input_tensor])
  x = layers.Activation('relu')(x)
  return x 
Example #21
Source File: inceptionv3.py    From ImageAI with MIT License 4 votes vote down vote up
def conv2d_bn(x,
              filters,
              num_row,
              num_col,
              padding='same',
              strides=(1, 1),
              name=None):
    """Utility function to apply conv + BN.

    # Arguments
        x: input tensor.
        filters: filters in `Conv2D`.
        num_row: height of the convolution kernel.
        num_col: width of the convolution kernel.
        padding: padding mode in `Conv2D`.
        strides: strides in `Conv2D`.
        name: name of the ops; will become `name + '_conv'`
            for the convolution and `name + '_bn'` for the
            batch norm layer.

    # Returns
        Output tensor after applying `Conv2D` and `BatchNormalization`.
    """
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    if K.image_data_format() == 'channels_first':
        bn_axis = 1
    else:
        bn_axis = 3
    x = Conv2D(
        filters, (num_row, num_col),
        strides=strides,
        padding=padding,
        use_bias=False,
        name=conv_name)(x)
    x = BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
    x = Activation('relu', name=name)(x)
    return x