Python lightgbm.__version__() Examples
The following are 2
code examples of lightgbm.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
lightgbm
, or try the search function
.
Example #1
Source File: lightgbm.py From mljar-supervised with MIT License | 5 votes |
def __init__(self, params): super(LightgbmAlgorithm, self).__init__(params) self.library_version = lgb.__version__ self.explain_level = params.get("explain_level", 0) self.rounds = additional.get("max_rounds", 10000) self.max_iters = 1 self.early_stopping_rounds = additional.get("early_stopping_rounds", 50) self.learner_params = { "boosting_type": "gbdt", "objective": self.params.get("objective", "binary"), "metric": self.params.get("metric", "binary_logloss"), "num_threads": multiprocessing.cpu_count(), "num_leaves": self.params.get("num_leaves", 31), "learning_rate": self.params.get("learning_rate", 0.1), "feature_fraction": self.params.get("feature_fraction", 1.0), "bagging_fraction": self.params.get("bagging_fraction", 1.0), "min_data_in_leaf": self.params.get("min_data_in_leaf", 20), "verbose": -1, "seed": self.params.get("seed", 1), } if "num_class" in self.params: # multiclass classification self.learner_params["num_class"] = self.params.get("num_class") logger.debug("LightgbmLearner __init__")
Example #2
Source File: lightgbm.py From mlflow with Apache License 2.0 | 5 votes |
def get_default_conda_env(): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ import lightgbm as lgb return _mlflow_conda_env( additional_conda_deps=None, # LightGBM is not yet available via the default conda channels, so we install it via pip additional_pip_deps=[ "lightgbm=={}".format(lgb.__version__), ], additional_conda_channels=None)