Python cv2.NORM_HAMMING Examples

The following are 20 code examples of cv2.NORM_HAMMING(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cv2 , or try the search function .
Example #1
Source File: find_obj.py    From OpenCV-Python-Tutorial with MIT License 10 votes vote down vote up
def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.xfeatures2d.SIFT_create()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.xfeatures2d.SURF_create(800)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB_create(400)
        norm = cv2.NORM_HAMMING
    elif chunks[0] == 'akaze':
        detector = cv2.AKAZE_create()
        norm = cv2.NORM_HAMMING
    elif chunks[0] == 'brisk':
        detector = cv2.BRISK_create()
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher 
Example #2
Source File: find_obj.py    From PyCV-time with MIT License 6 votes vote down vote up
def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.SIFT()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.SURF(800)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher 
Example #3
Source File: find_obj.py    From ImageAnalysis with MIT License 6 votes vote down vote up
def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.SIFT()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.SURF(400)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher 
Example #4
Source File: keypoint_matching_contrib.py    From Airtest with Apache License 2.0 6 votes vote down vote up
def init_detector(self):
        """Init keypoint detector object."""
        # BRIEF is a feature descriptor, recommand CenSurE as a fast detector:
        if check_cv_version_is_new():
            # OpenCV3/4, star/brief is in contrib module, you need to compile it seperately.
            try:
                self.star_detector = cv2.xfeatures2d.StarDetector_create()
                self.brief_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create()
            except:
                import traceback
                traceback.print_exc()
                print("to use %s, you should build contrib with opencv3.0" % self.METHOD_NAME)
                raise NoModuleError("There is no %s module in your OpenCV environment !" % self.METHOD_NAME)
        else:
            # OpenCV2.x
            self.star_detector = cv2.FeatureDetector_create("STAR")
            self.brief_extractor = cv2.DescriptorExtractor_create("BRIEF")

        # create BFMatcher object:
        self.matcher = cv2.BFMatcher(cv2.NORM_L1)  # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable) 
Example #5
Source File: descriptors.py    From hfnet with MIT License 6 votes vote down vote up
def matching(desc1, desc2, do_ratio_test=False, cross_check=True):
    if desc1.dtype == np.bool and desc2.dtype == np.bool:
        desc1, desc2 = np.packbits(desc1, axis=1), np.packbits(desc2, axis=1)
        norm = cv2.NORM_HAMMING
    else:
        desc1, desc2 = np.float32(desc1), np.float32(desc2)
        norm = cv2.NORM_L2

    if do_ratio_test:
        matches = []
        matcher = cv2.BFMatcher(norm)
        for m, n in matcher.knnMatch(desc1, desc2, k=2):
            m.distance = 1.0 if (n.distance == 0) else m.distance / n.distance
            matches.append(m)
    else:
        matcher = cv2.BFMatcher(norm, crossCheck=cross_check)
        matches = matcher.match(desc1, desc2)
    return matches_cv2np(matches) 
Example #6
Source File: feature_matcher.py    From pyslam with GNU General Public License v3.0 6 votes vote down vote up
def __init__(self, norm_type=cv2.NORM_HAMMING, cross_check = False, ratio_test=kRatioTest, type = FeatureMatcherTypes.FLANN):
        super().__init__(norm_type=norm_type, cross_check=cross_check, ratio_test=ratio_test, type=type)
        if norm_type == cv2.NORM_HAMMING:
            # FLANN parameters for binary descriptors 
            FLANN_INDEX_LSH = 6
            self.index_params= dict(algorithm = FLANN_INDEX_LSH,   # Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
                        table_number = 6,      # 12
                        key_size = 12,         # 20
                        multi_probe_level = 1) # 2            
        if norm_type == cv2.NORM_L2: 
            # FLANN parameters for float descriptors 
            FLANN_INDEX_KDTREE = 1
            self.index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 4)  
        self.search_params = dict(checks=32)   # or pass empty dictionary                 
        self.matcher = cv2.FlannBasedMatcher(self.index_params, self.search_params)  
        self.matcher_name = 'FlannFeatureMatcher' 
Example #7
Source File: findobj.py    From airtest with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.SIFT()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.SURF(800)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher 
Example #8
Source File: find_obj.py    From airtest with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.SIFT()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.SURF(800)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher 
Example #9
Source File: find_obj.py    From PyCV-time with MIT License 5 votes vote down vote up
def init_feature(name):
    chunks = name.split('-')
    if chunks[0] == 'sift':
        detector = cv2.xfeatures2d.SIFT()
        norm = cv2.NORM_L2
    elif chunks[0] == 'surf':
        detector = cv2.xfeatures2d.SURF(800)
        norm = cv2.NORM_L2
    elif chunks[0] == 'orb':
        detector = cv2.ORB(400)
        norm = cv2.NORM_HAMMING
    elif chunks[0] == 'akaze':
        detector = cv2.AKAZE()
        norm = cv2.NORM_HAMMING
    elif chunks[0] == 'brisk':
        detector = cv2.BRISK()
        norm = cv2.NORM_HAMMING
    else:
        return None, None
    if 'flann' in chunks:
        if norm == cv2.NORM_L2:
            flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
        else:
            flann_params= dict(algorithm = FLANN_INDEX_LSH,
                               table_number = 6, # 12
                               key_size = 12,     # 20
                               multi_probe_level = 1) #2
        matcher = cv2.FlannBasedMatcher(flann_params, {})  # bug : need to pass empty dict (#1329)
    else:
        matcher = cv2.BFMatcher(norm)
    return detector, matcher 
Example #10
Source File: feature_matcher.py    From pyslam with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self, norm_type=cv2.NORM_HAMMING, cross_check = False, ratio_test=kRatioTest, type = FeatureMatcherTypes.BF):
        super().__init__(norm_type=norm_type, cross_check=cross_check, ratio_test=ratio_test, type=type)
        self.matcher = cv2.BFMatcher(norm_type, cross_check)     
        self.matcher_name = 'BfFeatureMatcher'   


# Flann Matcher 
Example #11
Source File: feature_matcher.py    From pyslam with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self, norm_type=cv2.NORM_HAMMING, cross_check = False, ratio_test=kRatioTest, type = FeatureMatcherTypes.BF):
        self.type = type 
        self.norm_type = norm_type 
        self.cross_check = cross_check   # apply cross check 
        self.matches = []
        self.ratio_test = ratio_test 
        self.matcher = None 
        self.matcher_name = ''
        
        
    # input: des1 = queryDescriptors, des2= trainDescriptors
    # output: idx1, idx2  (vectors of corresponding indexes in des1 and des2, respectively) 
Example #12
Source File: feature_matcher.py    From pyslam with GNU General Public License v3.0 5 votes vote down vote up
def feature_matcher_factory(norm_type=cv2.NORM_HAMMING, cross_check=False, ratio_test=kRatioTest, type=FeatureMatcherTypes.FLANN):
    if type == FeatureMatcherTypes.BF:
        return BfFeatureMatcher(norm_type=norm_type, cross_check=cross_check, ratio_test=ratio_test, type=type)
    if type == FeatureMatcherTypes.FLANN:
        return FlannFeatureMatcher(norm_type=norm_type, cross_check=cross_check, ratio_test=ratio_test, type=type)
    return None 
Example #13
Source File: keypoint_matching.py    From Airtest with Apache License 2.0 5 votes vote down vote up
def init_detector(self):
        """Init keypoint detector object."""
        self.detector = cv2.ORB_create()
        # create BFMatcher object:
        self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)  # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable) 
Example #14
Source File: keypoint_matching.py    From Airtest with Apache License 2.0 5 votes vote down vote up
def init_detector(self):
        """Init keypoint detector object."""
        self.detector = cv2.AKAZE_create()
        # create BFMatcher object:
        self.matcher = cv2.BFMatcher(cv2.NORM_L1)  # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable) 
Example #15
Source File: keypoint_matching.py    From Airtest with Apache License 2.0 5 votes vote down vote up
def init_detector(self):
        """Init keypoint detector object."""
        self.detector = cv2.BRISK_create()
        # create BFMatcher object:
        self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)  # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable) 
Example #16
Source File: keypoint_base.py    From Airtest with Apache License 2.0 5 votes vote down vote up
def init_detector(self):
        """Init keypoint detector object."""
        self.detector = cv2.KAZE_create()
        # create BFMatcher object:
        self.matcher = cv2.BFMatcher(cv2.NORM_L1)  # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable) 
Example #17
Source File: ftlib.py    From sea_ice_drift with GNU General Public License v3.0 5 votes vote down vote up
def _get_matches(descriptors1, descriptors2, matcher, norm, verbose):
    ''' Match keypoints using BFMatcher with cv2.NORM_HAMMING '''
    t0 = time.time()
    bf = matcher(norm)
    matches = bf.knnMatch(descriptors1, descriptors2, k=2)
    t1 = time.time()
    if verbose:
        print('Keypoints matched', t1 - t0)
    return matches 
Example #18
Source File: ftlib.py    From sea_ice_drift with GNU General Public License v3.0 5 votes vote down vote up
def get_match_coords(keyPoints1, descriptors1,
                                    keyPoints2, descriptors2,
                                    matcher=cv2.BFMatcher,
                                    norm=cv2.NORM_HAMMING,
                                    ratio_test=0.7,
                                    verbose=True,
                                    **kwargs):
    ''' Filter matching keypoints and convert to X,Y coordinates
    Parameters
    ----------
        keyPoints1 : list - keypoints on img1 from find_key_points()
        descriptors1 : list - descriptors on img1 from find_key_points()
        keyPoints2 : list - keypoints on img2 from find_key_points()
        descriptors2 : list - descriptors on img2 from find_key_points()
        matcher : matcher from CV2
        norm : int - type of distance
        ratio_test : float - Lowe ratio
        verbose : bool - print some output ?
    Returns
    -------
        x1, y1, x2, y2 : coordinates of start and end of displacement [pixels]
    '''
    matches = _get_matches(descriptors1,
                           descriptors2, matcher, norm, verbose)
    x1, y1, x2, y2 = _filter_matches(matches, ratio_test,
                                     keyPoints1, keyPoints2, verbose)
    return x1, y1, x2, y2 
Example #19
Source File: warp_model.py    From IkaLog with Apache License 2.0 4 votes vote down vote up
def __init__(self):

        if hasattr(self, 'trained') and self.trained:
            return

        super(WarpFilterModel, self).__init__()

        for lang in Localization.get_game_languages():
            model_filename = IkaUtils.get_path(
                'data', 'webcam_calibration.%s.model' % lang)
            if os.path.exists(model_filename):
                break

        self.detector = cv2.AKAZE_create()
        self.norm = cv2.NORM_HAMMING
        self.matcher = cv2.BFMatcher(self.norm)

        try:
            self.loadModelFromFile(model_filename)
            num_keypoints = len(self.calibration_image_keypoints)
            IkaUtils.dprint('%s: Loaded model data\n  %s (%d keypoints)' % (self, model_filename, num_keypoints))
        except:
            IkaUtils.dprint('%s: Could not load model data. Trying to rebuild...' % self)

            calibration_image = cv2.imread('camera/ika_usbcam/Pause.png', 0)
            self.calibration_image_size = calibration_image.shape[:2]
            calibration_image_hight, calibration_image_width = \
                calibration_image.shape[ :2]
            self.calibration_image_keypoints, self.calibration_image_descriptors = \
                self.detector.detectAndCompute( calibration_image, None)

            print(self.calibration_image_keypoints)
            print(self.calibration_image_descriptors)

            model_filename = IkaUtils.get_path(
                'data',
                'webcam_calibration.%s.model' % Localization.get_game_languages()[0]
            )
            self.saveModelToFile(model_filename)
            IkaUtils.dprint('%s: Created model %s' % (self, model_filename))

        self.trained = True 
Example #20
Source File: matcher.py    From ImageAnalysis with MIT License 4 votes vote down vote up
def configure():
    global detect_scale
    global the_matcher
    global max_distance
    global min_pairs

    detect_scale = detector_node.getFloat('scale')
    detector_str = detector_node.getString('detector')
    if detector_str == 'SIFT' or detector_str == 'SURF':
        norm = cv2.NORM_L2
        max_distance = 270.0
    elif detector_str == 'ORB' or detector_str == 'Star':
        norm = cv2.NORM_HAMMING
        max_distance = 64
    else:
        log("Detector not specified or not known:", detector_str)
        quit()

    # work around a feature/bug: flann enums don't exist
    FLANN_INDEX_KDTREE = 1
    FLANN_INDEX_LSH    = 6
    if norm == cv2.NORM_L2:
        flann_params = {
            'algorithm': FLANN_INDEX_KDTREE,
            'trees': 5
        }
    else:
        flann_params = {
            'algorithm': FLANN_INDEX_LSH,
            'table_number': 6,     # 12
            'key_size': 12,        # 20
            'multi_probe_level': 1 #2
        }
    search_params = {
        'checks': 100
    }
    the_matcher = cv2.FlannBasedMatcher(flann_params, search_params)
    min_pairs = matcher_node.getFloat('min_pairs')

# Iterate through all the matches for the specified image and
# delete keypoints that don't satisfy the homography (or
# fundamental) relationship.  Returns true if match set is clean, false
# if keypoints were removed.
#
# Notice: this tends to eliminate matches that aren't all on the
# same plane, so if the scene has a lot of depth, this could knock
# out a lot of good matches.