Python cv2.NORM_L1 Examples
The following are 8
code examples of cv2.NORM_L1().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: keypoint_matching_contrib.py From Airtest with Apache License 2.0 | 6 votes |
def init_detector(self): """Init keypoint detector object.""" # BRIEF is a feature descriptor, recommand CenSurE as a fast detector: if check_cv_version_is_new(): # OpenCV3/4, star/brief is in contrib module, you need to compile it seperately. try: self.star_detector = cv2.xfeatures2d.StarDetector_create() self.brief_extractor = cv2.xfeatures2d.BriefDescriptorExtractor_create() except: import traceback traceback.print_exc() print("to use %s, you should build contrib with opencv3.0" % self.METHOD_NAME) raise NoModuleError("There is no %s module in your OpenCV environment !" % self.METHOD_NAME) else: # OpenCV2.x self.star_detector = cv2.FeatureDetector_create("STAR") self.brief_extractor = cv2.DescriptorExtractor_create("BRIEF") # create BFMatcher object: self.matcher = cv2.BFMatcher(cv2.NORM_L1) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
Example #2
Source File: clip_filter.py From youtube-gesture-dataset with BSD 3-Clause "New" or "Revised" License | 6 votes |
def is_picture(self): sampling_interval = int(math.floor(self.scene_length / 5)) sampling_frames = list(range(self.start_frame_no + sampling_interval, self.end_frame_no - sampling_interval + 1, sampling_interval)) frames = [] for frame_no in sampling_frames: self.video.set(cv2.CAP_PROP_POS_FRAMES, frame_no) ret, frame = self.video.read() frames.append(frame) diff = 0 n_diff = 0 for frame, next_frame in zip(frames, frames[1:]): diff += cv2.norm(frame, next_frame, cv2.NORM_L1) # abs diff n_diff += 1 diff /= n_diff self.debugging_info[4] = round(diff, 0) return diff < 3000000
Example #3
Source File: event.py From EVDodgeNet with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_frame(self,frame_data): # print(frame_data.size) frame = np.rec.array(None, dtype=[('value', np.float16),('valid', np.bool_)], shape=(self.height, self.width)) frame.valid.fill(False) frame.value.fill(0.) # print(frame.size) for datum in np.nditer(frame_data, flags=['zerosize_ok']): # print(datum['y']) ts_val = datum['ts'] f_data = frame[datum['y'], datum['x']] f_data.value += 1 img = frame.value/20*255 img = img.astype('uint8') # img = np.piecewise(img, [img <= 0, (img > 0) & (img < 255), img >= 255], [0, lambda x: x, 255]) # cv2.normalize(img,img,0,255,cv2.NORM_L1) cv2.normalize(img,img,0,255,cv2.NORM_MINMAX) img = cv2.flip(img, 1) img = np.rot90(img) # cv2.imshow('img_f', img) # cv2.waitKey(0) return img
Example #4
Source File: keypoint_base.py From Airtest with Apache License 2.0 | 5 votes |
def init_detector(self): """Init keypoint detector object.""" self.detector = cv2.KAZE_create() # create BFMatcher object: self.matcher = cv2.BFMatcher(cv2.NORM_L1) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
Example #5
Source File: keypoint_matching.py From Airtest with Apache License 2.0 | 5 votes |
def init_detector(self): """Init keypoint detector object.""" self.detector = cv2.BRISK_create() # create BFMatcher object: self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
Example #6
Source File: keypoint_matching.py From Airtest with Apache License 2.0 | 5 votes |
def init_detector(self): """Init keypoint detector object.""" self.detector = cv2.AKAZE_create() # create BFMatcher object: self.matcher = cv2.BFMatcher(cv2.NORM_L1) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
Example #7
Source File: keypoint_matching.py From Airtest with Apache License 2.0 | 5 votes |
def init_detector(self): """Init keypoint detector object.""" self.detector = cv2.ORB_create() # create BFMatcher object: self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING) # cv2.NORM_L1 cv2.NORM_L2 cv2.NORM_HAMMING(not useable)
Example #8
Source File: event.py From EVDodgeNet with BSD 3-Clause "New" or "Revised" License | 4 votes |
def get_projection_mat(self, dx, dy, dz, theta): print("inside get_projection", dx,dy,dz,theta) frame = np.rec.array(None, dtype=[('value', np.uint16)], shape=(self.height, self.width)) frame.value.fill(0) dx = dx*1e-3 dy = dy*1e-3 dz = dz*1e-3 #Project matrix start = time.time() k = np.matrix([[dx, dy]]) con_k = np.repeat(k.T, self.old_xy.size/2, axis=1) c, s = np.cos(theta), np.sin(theta) R = np.matrix([[c,-s], [s,c]]) new = self.old_xy - np.multiply((self.ts),( con_k + (dz*np.dot(R, self.old_xy)))) end = time.time() print("Projection time", end-start) #Converstion of 2D to 1D array i = np.array(new[0,:] + self.width * new[1,:]) i.astype(int) u_ele, c_ele = np.unique(i.T,return_counts=True) u_c = np.asarray((u_ele, c_ele)) print(u_c.shape, self.width, self.height) start = time.time() # inputs = range(new.size/2) # for i in inputs: # if((new[0,i] >= self.width) or (new[0,i]<0) or (new[1,i] >= self.height) or (new[1,i] < 0)): # continue # xy = frame[int(new[1,i]), int(new[0,i])] # xy.value += 1 inputs = range(u_c.size/2) for i in inputs: x = int(u_c[0,i]%self.width) y = int(u_c[0,i]/self.width) if((x >= self.width) or (x<0) or (y >= self.height) or (y < 0)): continue xy = frame[y,x] xy.value = u_c[1,i] end = time.time() print("For loop time", end-start) img = frame.value * 10 print(img.max()) # cv2.normalize(img,img,0,255,cv2.NORM_MINMAX) img = img.astype('uint8') # cv2.normalize(img,img,0,255,cv2.NORM_L1) # cv2.imshow('img_p', img) # cv2.waitKey(0) return img