Python cv2.COLORMAP_HSV Examples
The following are 6
code examples of cv2.COLORMAP_HSV().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: misc.py From LightNet with MIT License | 6 votes |
def save_class_activation_on_image(org_img, activation_map, file_name): """ Saves cam activation map and activation map on the original image Args: org_img (PIL img): Original image activation_map (numpy arr): activation map (grayscale) 0-255 file_name (str): File name of the exported image """ if not os.path.exists('../results'): os.makedirs('../results') # Grayscale activation map path_to_file = os.path.join('../results', file_name+'_Cam_Grayscale.jpg') cv2.imwrite(path_to_file, activation_map) # Heatmap of activation map activation_heatmap = cv2.applyColorMap(activation_map, cv2.COLORMAP_HSV) path_to_file = os.path.join('../results', file_name+'_Cam_Heatmap.jpg') cv2.imwrite(path_to_file, activation_heatmap) # Heatmap on picture org_img = cv2.resize(org_img, (224, 224)) img_with_heatmap = np.float32(activation_heatmap) + np.float32(org_img) img_with_heatmap = img_with_heatmap / np.max(img_with_heatmap) path_to_file = os.path.join('../results', file_name+'_Cam_On_Image.jpg') cv2.imwrite(path_to_file, np.uint8(255 * img_with_heatmap))
Example #2
Source File: misc_functions.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 6 votes |
def save_class_activation_on_image(org_img, activation_map, file_name): """ Saves cam activation map and activation map on the original image Args: org_img (PIL img): Original image activation_map (numpy arr): activation map (grayscale) 0-255 file_name (str): File name of the exported image """ # Grayscale activation map path_to_file = os.path.join('../results', file_name+'_Cam_Grayscale.jpg') cv2.imwrite(path_to_file, activation_map) # Heatmap of activation map activation_heatmap = cv2.applyColorMap(activation_map, cv2.COLORMAP_HSV) path_to_file = os.path.join('../results', file_name+'_Cam_Heatmap.jpg') cv2.imwrite(path_to_file, activation_heatmap) # Heatmap on picture org_img = cv2.resize(org_img, (224, 224)) img_with_heatmap = np.float32(activation_heatmap) + np.float32(org_img) img_with_heatmap = img_with_heatmap / np.max(img_with_heatmap) path_to_file = os.path.join('../results', file_name+'_Cam_On_Image.jpg') cv2.imwrite(path_to_file, np.uint8(255 * img_with_heatmap))
Example #3
Source File: live_demo.py From mr_saliency with GNU General Public License v2.0 | 6 votes |
def __init__(self, parent, capture, fps=24): wx.Panel.__init__(self, parent) self.capture = capture2 ret, frame = self.capture.read() sal = mr_sal.saliency(frame) sal = cv2.resize(sal,(320,240)).astype(sp.uint8) sal = cv2.normalize(sal, None, 0, 255, cv2.NORM_MINMAX) outsal = cv2.applyColorMap(sal,cv2.COLORMAP_HSV) self.bmp = wx.BitmapFromBuffer(320,240, outsal.astype(sp.uint8)) self.timer = wx.Timer(self) self.timer.Start(1000./fps) self.Bind(wx.EVT_PAINT, self.OnPaint) self.Bind(wx.EVT_TIMER, self.NextFrame)
Example #4
Source File: util.py From pymotutils with GNU General Public License v3.0 | 5 votes |
def apply_heat_map_uchar(values, mini=None, maxi=None): """Color values by their intensity. Applies an HSV color map. Parameters ---------- values: ndarray The N dimensional array of intensities (ndim=1). mini : Optional[float] The intensity value of minimum saturation (lower bound of color map). maxi : Optional[float] The intensity value of maximum saturation (upper bound of color map). Returns ------- ndarray The Nx3 shaped array of color codes in range [0, 255]. The dtype is np.int. """ if len(values) == 0: return np.zeros((0, ), dtype=np.uint8) mini, maxi = mini or np.min(values), maxi or np.max(values) valrange = maxi - mini if valrange < np.finfo(valrange).eps: valrange = np.inf normalized = (255. * (values - mini) / valrange).astype(np.uint8) colors = cv2.applyColorMap(normalized, cv2.COLORMAP_HSV) return colors.astype(np.int).reshape(-1, 3)
Example #5
Source File: gms_matcher.py From GMS-Feature-Matcher with BSD 3-Clause "New" or "Revised" License | 4 votes |
def draw_matches(self, src1, src2, drawing_type): height = max(src1.shape[0], src2.shape[0]) width = src1.shape[1] + src2.shape[1] output = np.zeros((height, width, 3), dtype=np.uint8) output[0:src1.shape[0], 0:src1.shape[1]] = src1 output[0:src2.shape[0], src1.shape[1]:] = src2[:] if drawing_type == DrawingType.ONLY_LINES: for i in range(len(self.gms_matches)): left = self.keypoints_image1[self.gms_matches[i].queryIdx].pt right = tuple(sum(x) for x in zip(self.keypoints_image2[self.gms_matches[i].trainIdx].pt, (src1.shape[1], 0))) cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (0, 255, 255)) elif drawing_type == DrawingType.LINES_AND_POINTS: for i in range(len(self.gms_matches)): left = self.keypoints_image1[self.gms_matches[i].queryIdx].pt right = tuple(sum(x) for x in zip(self.keypoints_image2[self.gms_matches[i].trainIdx].pt, (src1.shape[1], 0))) cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (255, 0, 0)) for i in range(len(self.gms_matches)): left = self.keypoints_image1[self.gms_matches[i].queryIdx].pt right = tuple(sum(x) for x in zip(self.keypoints_image2[self.gms_matches[i].trainIdx].pt, (src1.shape[1], 0))) cv2.circle(output, tuple(map(int, left)), 1, (0, 255, 255), 2) cv2.circle(output, tuple(map(int, right)), 1, (0, 255, 0), 2) elif drawing_type == DrawingType.COLOR_CODED_POINTS_X or drawing_type == DrawingType.COLOR_CODED_POINTS_Y or drawing_type == DrawingType.COLOR_CODED_POINTS_XpY : _1_255 = np.expand_dims( np.array( range( 0, 256 ), dtype='uint8' ), 1 ) _colormap = cv2.applyColorMap(_1_255, cv2.COLORMAP_HSV) for i in range(len(self.gms_matches)): left = self.keypoints_image1[self.gms_matches[i].queryIdx].pt right = tuple(sum(x) for x in zip(self.keypoints_image2[self.gms_matches[i].trainIdx].pt, (src1.shape[1], 0))) if drawing_type == DrawingType.COLOR_CODED_POINTS_X: colormap_idx = int(left[0] * 256. / src1.shape[1] ) # x-gradient if drawing_type == DrawingType.COLOR_CODED_POINTS_Y: colormap_idx = int(left[1] * 256. / src1.shape[0] ) # y-gradient if drawing_type == DrawingType.COLOR_CODED_POINTS_XpY: colormap_idx = int( (left[0] - src1.shape[1]*.5 + left[1] - src1.shape[0]*.5) * 256. / (src1.shape[0]*.5 + src1.shape[1]*.5) ) # manhattan gradient color = tuple( map(int, _colormap[ colormap_idx,0,: ]) ) cv2.circle(output, tuple(map(int, left)), 1, color, 2) cv2.circle(output, tuple(map(int, right)), 1, color, 2) cv2.imshow('show', output) cv2.waitKey()
Example #6
Source File: opencv_demo.py From GMS-Feature-Matcher with BSD 3-Clause "New" or "Revised" License | 4 votes |
def draw_matches(src1, src2, kp1, kp2, matches, drawing_type): height = max(src1.shape[0], src2.shape[0]) width = src1.shape[1] + src2.shape[1] output = np.zeros((height, width, 3), dtype=np.uint8) output[0:src1.shape[0], 0:src1.shape[1]] = src1 output[0:src2.shape[0], src1.shape[1]:] = src2[:] if drawing_type == DrawingType.ONLY_LINES: for i in range(len(matches)): left = kp1[matches[i].queryIdx].pt right = tuple(sum(x) for x in zip(kp2[matches[i].trainIdx].pt, (src1.shape[1], 0))) cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (0, 255, 255)) elif drawing_type == DrawingType.LINES_AND_POINTS: for i in range(len(matches)): left = kp1[matches[i].queryIdx].pt right = tuple(sum(x) for x in zip(kp2[matches[i].trainIdx].pt, (src1.shape[1], 0))) cv2.line(output, tuple(map(int, left)), tuple(map(int, right)), (255, 0, 0)) for i in range(len(matches)): left = kp1[matches[i].queryIdx].pt right = tuple(sum(x) for x in zip(kp2[matches[i].trainIdx].pt, (src1.shape[1], 0))) cv2.circle(output, tuple(map(int, left)), 1, (0, 255, 255), 2) cv2.circle(output, tuple(map(int, right)), 1, (0, 255, 0), 2) elif drawing_type == DrawingType.COLOR_CODED_POINTS_X or drawing_type == DrawingType.COLOR_CODED_POINTS_Y or drawing_type == DrawingType.COLOR_CODED_POINTS_XpY: _1_255 = np.expand_dims(np.array(range(0, 256), dtype='uint8'), 1) _colormap = cv2.applyColorMap(_1_255, cv2.COLORMAP_HSV) for i in range(len(matches)): left = kp1[matches[i].queryIdx].pt right = tuple(sum(x) for x in zip(kp2[matches[i].trainIdx].pt, (src1.shape[1], 0))) if drawing_type == DrawingType.COLOR_CODED_POINTS_X: colormap_idx = int(left[0] * 256. / src1.shape[1]) # x-gradient if drawing_type == DrawingType.COLOR_CODED_POINTS_Y: colormap_idx = int(left[1] * 256. / src1.shape[0]) # y-gradient if drawing_type == DrawingType.COLOR_CODED_POINTS_XpY: colormap_idx = int((left[0] - src1.shape[1]*.5 + left[1] - src1.shape[0]*.5) * 256. / (src1.shape[0]*.5 + src1.shape[1]*.5)) # manhattan gradient color = tuple(map(int, _colormap[colormap_idx, 0, :])) cv2.circle(output, tuple(map(int, left)), 1, color, 2) cv2.circle(output, tuple(map(int, right)), 1, color, 2) return output