Python cv2.INPAINT_NS Examples
The following are 9
code examples of cv2.INPAINT_NS().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: demo_segmentation.py From Text_Segmentation_Image_Inpainting with GNU General Public License v3.0 | 6 votes |
def process(eval_img, device='cpu'): (img, origin, unpadder), file_name = eval_img with torch.no_grad(): out = model(img.to(device)) prob = F.sigmoid(out) mask = prob > 0.5 mask = torch.nn.MaxPool2d(kernel_size=(3, 3), padding=(1, 1), stride=1)(mask.float()).byte() mask = unpadder(mask) mask = mask.float().cpu() save_image(mask, file_name + ' _mask.jpg') origin_np = np.array(to_pil_image(origin[0])) mask_np = to_pil_image(mask[0]).convert("L") mask_np = np.array(mask_np, dtype='uint8') mask_np = draw_bounding_box(origin_np, mask_np, 500) mask_ = Image.fromarray(mask_np) mask_.save(file_name + "_contour.jpg") # ret, mask_np = cv2.threshold(mask_np, 127, 255, 0) # dst = cv2.inpaint(origin_np, mask_np, 1, cv2.INPAINT_NS) # out = Image.fromarray(dst) # out.save(file_name + ' _box.jpg')
Example #2
Source File: image.py From ggcnn with BSD 3-Clause "New" or "Revised" License | 6 votes |
def inpaint(self, missing_value=0): """ Inpaint missing values in depth image. :param missing_value: Value to fill in teh depth image. """ # cv2 inpainting doesn't handle the border properly # https://stackoverflow.com/questions/25974033/inpainting-depth-map-still-a-black-image-border self.img = cv2.copyMakeBorder(self.img, 1, 1, 1, 1, cv2.BORDER_DEFAULT) mask = (self.img == missing_value).astype(np.uint8) # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. scale = np.abs(self.img).max() self.img = self.img.astype(np.float32) / scale # Has to be float32, 64 not supported. self.img = cv2.inpaint(self.img, mask, 1, cv2.INPAINT_NS) # Back to original size and value range. self.img = self.img[1:-1, 1:-1] self.img = self.img * scale
Example #3
Source File: measure.py From ambient-gan with MIT License | 6 votes |
def unmeasure_np(self, hparams, x_measured_val, theta_val): if hparams.unmeasure_type == 'medfilt': unmeasure_func = lambda image, mask: signal.medfilt(image) elif hparams.unmeasure_type == 'inpaint-telea': inpaint_type = cv2.INPAINT_TELEA unmeasure_func = measure_utils.get_inpaint_func_opencv(hparams, inpaint_type) elif hparams.unmeasure_type == 'inpaint-ns': inpaint_type = cv2.INPAINT_NS unmeasure_func = measure_utils.get_inpaint_func_opencv(hparams, inpaint_type) elif hparams.unmeasure_type == 'inpaint-tv': unmeasure_func = measure_utils.get_inpaint_func_tv() elif hparams.unmeasure_type == 'blur': unmeasure_func = measure_utils.get_blur_func() else: raise NotImplementedError x_unmeasured_val = np.zeros_like(x_measured_val) for i in range(x_measured_val.shape[0]): x_unmeasured_val[i] = unmeasure_func(x_measured_val[i], theta_val[i]) return x_unmeasured_val
Example #4
Source File: ggcnn_torch.py From mvp_grasp with BSD 3-Clause "New" or "Revised" License | 5 votes |
def process_depth_image(depth, crop_size, out_size=300, return_mask=False, crop_y_offset=0): imh, imw = depth.shape with TimeIt('1'): # Crop. depth_crop = depth[(imh - crop_size) // 2 - crop_y_offset:(imh - crop_size) // 2 + crop_size - crop_y_offset, (imw - crop_size) // 2:(imw - crop_size) // 2 + crop_size] # depth_nan_mask = np.isnan(depth_crop).astype(np.uint8) # Inpaint # OpenCV inpainting does weird things at the border. with TimeIt('2'): depth_crop = cv2.copyMakeBorder(depth_crop, 1, 1, 1, 1, cv2.BORDER_DEFAULT) depth_nan_mask = np.isnan(depth_crop).astype(np.uint8) with TimeIt('3'): depth_crop[depth_nan_mask==1] = 0 with TimeIt('4'): # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. depth_scale = np.abs(depth_crop).max() depth_crop = depth_crop.astype(np.float32) / depth_scale # Has to be float32, 64 not supported. with TimeIt('Inpainting'): depth_crop = cv2.inpaint(depth_crop, depth_nan_mask, 1, cv2.INPAINT_NS) # Back to original size and value range. depth_crop = depth_crop[1:-1, 1:-1] depth_crop = depth_crop * depth_scale with TimeIt('5'): # Resize depth_crop = cv2.resize(depth_crop, (out_size, out_size), cv2.INTER_AREA) if return_mask: with TimeIt('6'): depth_nan_mask = depth_nan_mask[1:-1, 1:-1] depth_nan_mask = cv2.resize(depth_nan_mask, (out_size, out_size), cv2.INTER_NEAREST) return depth_crop, depth_nan_mask else: return depth_crop
Example #5
Source File: ImageRestoration.py From Finger-Detection-and-Tracking with BSD 2-Clause "Simplified" License | 5 votes |
def main(): image = cv2.imread("../data/Damaged Image.tiff", 1) mask_image = cv2.imread("../data/Mask.tiff", 0) telea_image = cv2.inpaint(image, mask_image, 5, cv2.INPAINT_TELEA) ns_image = cv2.inpaint(image, mask_image, 5, cv2.INPAINT_NS) cv2.imshow("Orignal Image", image) cv2.imshow("Mask Image", mask_image) cv2.imshow("TELEA Restored Image", telea_image) cv2.imshow("NS Restored Image", ns_image) cv2.waitKey(0) cv2.destroyAllWindows()
Example #6
Source File: transforms.py From albumentations with MIT License | 5 votes |
def apply(self, img, dropout_mask=None, **params): if dropout_mask is None: return img if self.image_fill_value == "inpaint": dropout_mask = dropout_mask.astype(np.uint8) _, _, w, h = cv2.boundingRect(dropout_mask) radius = min(3, max(w, h) // 2) img = cv2.inpaint(img, dropout_mask, radius, cv2.INPAINT_NS) else: img = img.copy() img[dropout_mask] = self.image_fill_value return img
Example #7
Source File: utils.py From casme with BSD 3-Clause "New" or "Revised" License | 5 votes |
def inpaint(mask, masked_image): l = [] for i in range(mask.size(0)): permuted_image = permute_image(masked_image[i], mul255=True) m = mask[i].squeeze().byte().numpy() inpainted_numpy = cv2.inpaint(permuted_image, m, 3, cv2.INPAINT_TELEA) #cv2.INPAINT_NS l.append(transforms.ToTensor()(inpainted_numpy).unsqueeze(0)) inpainted_tensor = torch.cat(l, 0) return inpainted_tensor
Example #8
Source File: common_util.py From Pix2Pose with MIT License | 4 votes |
def get_normal(depth_refine,fx=-1,fy=-1,cx=-1,cy=-1,bbox=np.array([0]),refine=True): ''' fast normal computation ''' res_y = depth_refine.shape[0] res_x = depth_refine.shape[1] centerX=cx centerY=cy constant_x = 1/fx constant_y = 1/fy if(refine): depth_refine = np.nan_to_num(depth_refine) mask = np.zeros_like(depth_refine).astype(np.uint8) mask[depth_refine==0]=1 depth_refine = depth_refine.astype(np.float32) depth_refine = cv2.inpaint(depth_refine,mask,2,cv2.INPAINT_NS) depth_refine = depth_refine.astype(np.float) depth_refine = ndimage.gaussian_filter(depth_refine,2) uv_table = np.zeros((res_y,res_x,2),dtype=np.int16) column = np.arange(0,res_y) uv_table[:,:,1] = np.arange(0,res_x) - centerX #x-c_x (u) uv_table[:,:,0] = column[:,np.newaxis] - centerY #y-c_y (v) if(bbox.shape[0]==4): uv_table = uv_table[bbox[0]:bbox[2],bbox[1]:bbox[3]] v_x = np.zeros((bbox[2]-bbox[0],bbox[3]-bbox[1],3)) v_y = np.zeros((bbox[2]-bbox[0],bbox[3]-bbox[1],3)) normals = np.zeros((bbox[2]-bbox[0],bbox[3]-bbox[1],3)) depth_refine=depth_refine[bbox[0]:bbox[2],bbox[1]:bbox[3]] else: v_x = np.zeros((res_y,res_x,3)) v_y = np.zeros((res_y,res_x,3)) normals = np.zeros((res_y,res_x,3)) uv_table_sign= np.copy(uv_table) uv_table=np.abs(np.copy(uv_table)) dig=np.gradient(depth_refine,2,edge_order=2) v_y[:,:,0]=uv_table_sign[:,:,1]*constant_x*dig[0] v_y[:,:,1]=depth_refine*constant_y+(uv_table_sign[:,:,0]*constant_y)*dig[0] v_y[:,:,2]=dig[0] v_x[:,:,0]=depth_refine*constant_x+uv_table_sign[:,:,1]*constant_x*dig[1] v_x[:,:,1]=uv_table_sign[:,:,0]*constant_y*dig[1] v_x[:,:,2]=dig[1] cross = np.cross(v_x.reshape(-1,3),v_y.reshape(-1,3)) norm = np.expand_dims(np.linalg.norm(cross,axis=1),axis=1) norm[norm==0]=1 cross = cross/norm if(bbox.shape[0]==4): cross =cross.reshape((bbox[2]-bbox[0],bbox[3]-bbox[1],3)) else: cross =cross.reshape(res_y,res_x,3) cross= np.nan_to_num(cross) return cross
Example #9
Source File: ggcnn.py From mvp_grasp with BSD 3-Clause "New" or "Revised" License | 4 votes |
def process_depth_image(depth, crop_size, out_size=300, return_mask=False, crop_y_offset=0): imh, imw = depth.shape with TimeIt('Process Depth Image'): with TimeIt('Crop'): # Crop. depth_crop = depth[(imh - crop_size) // 2 - crop_y_offset:(imh - crop_size) // 2 + crop_size - crop_y_offset, (imw - crop_size) // 2:(imw - crop_size) // 2 + crop_size] # Inpaint # OpenCV inpainting does weird things at the border. with TimeIt('Inpainting_Processing'): depth_crop = cv2.copyMakeBorder(depth_crop, 1, 1, 1, 1, cv2.BORDER_DEFAULT) depth_nan_mask = np.isnan(depth_crop).astype(np.uint8) kernel = np.ones((3, 3),np.uint8) depth_nan_mask = cv2.dilate(depth_nan_mask, kernel, iterations=1) depth_crop[depth_nan_mask==1] = 0 # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. depth_scale = np.abs(depth_crop).max() depth_crop = depth_crop.astype(np.float32) / depth_scale # Has to be float32, 64 not supported. with TimeIt('Inpainting'): depth_crop = cv2.inpaint(depth_crop, depth_nan_mask, 1, cv2.INPAINT_NS) # Back to original size and value range. depth_crop = depth_crop[1:-1, 1:-1] depth_crop = depth_crop * depth_scale with TimeIt('Resizing'): # Resize depth_crop = cv2.resize(depth_crop, (out_size, out_size), cv2.INTER_AREA) if return_mask: with TimeIt('Return Mask'): depth_nan_mask = depth_nan_mask[1:-1, 1:-1] depth_nan_mask = cv2.resize(depth_nan_mask, (out_size, out_size), cv2.INTER_NEAREST) return depth_crop, depth_nan_mask else: return depth_crop