Python cv2.BORDER_WRAP Examples
The following are 6
code examples of cv2.BORDER_WRAP().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: visualize_mesh.py From Structured3D with MIT License | 6 votes |
def E2P(image, corner_i, corner_j, wall_height, camera, resolution=512, is_wall=True): """convert panorama to persepctive image """ corner_i = corner_i - camera corner_j = corner_j - camera if is_wall: xs = np.linspace(corner_i[0], corner_j[0], resolution)[None].repeat(resolution, 0) ys = np.linspace(corner_i[1], corner_j[1], resolution)[None].repeat(resolution, 0) zs = np.linspace(-camera[-1], wall_height - camera[-1], resolution)[:, None].repeat(resolution, 1) else: xs = np.linspace(corner_i[0], corner_j[0], resolution)[None].repeat(resolution, 0) ys = np.linspace(corner_i[1], corner_j[1], resolution)[:, None].repeat(resolution, 1) zs = np.zeros_like(xs) + wall_height - camera[-1] coorx, coory = xyz_2_coorxy(xs, ys, zs) persp = cv2.remap(image, coorx.astype(np.float32), coory.astype(np.float32), cv2.INTER_CUBIC, borderMode=cv2.BORDER_WRAP) return persp
Example #2
Source File: deconvolution.py From OpenCV-Python-Tutorial with MIT License | 5 votes |
def blur_edge(img, d=31): h, w = img.shape[:2] img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP) img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d] y, x = np.indices((h, w)) dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1) w = np.minimum(np.float32(dist)/d, 1.0) return img*w + img_blur*(1-w)
Example #3
Source File: blend.py From imgaug with MIT License | 5 votes |
def _smoothen_alphas(cls, alphas, sigma): if sigma <= 0.0+1e-2: return alphas ksize = max(int(sigma * 2.5), 3) ksize_y, ksize_x = (1, ksize) if ksize_x % 2 == 0: ksize_x += 1 # we fake here cv2.BORDER_WRAP, because GaussianBlur does not # support that mode, i.e. we want: # cdefgh|abcdefgh|abcdefg alphas = np.concatenate([ alphas[-ksize_x:], alphas, alphas[:ksize_x], ]) alphas = cv2.GaussianBlur( _normalize_cv2_input_arr_(alphas[np.newaxis, :]), ksize=(ksize_x, ksize_y), sigmaX=sigma, sigmaY=sigma, borderType=cv2.BORDER_REPLICATE )[0, :] # revert fake BORDER_WRAP alphas = alphas[ksize_x:-ksize_x] return alphas # Added in 0.4.0.
Example #4
Source File: deconvolution.py From PyCV-time with MIT License | 5 votes |
def blur_edge(img, d=31): h, w = img.shape[:2] img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP) img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d] y, x = np.indices((h, w)) dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1) w = np.minimum(np.float32(dist)/d, 1.0) return img*w + img_blur*(1-w)
Example #5
Source File: deconvolution.py From PyCV-time with MIT License | 5 votes |
def blur_edge(img, d=31): h, w = img.shape[:2] img_pad = cv2.copyMakeBorder(img, d, d, d, d, cv2.BORDER_WRAP) img_blur = cv2.GaussianBlur(img_pad, (2*d+1, 2*d+1), -1)[d:-d,d:-d] y, x = np.indices((h, w)) dist = np.dstack([x, w-x-1, y, h-y-1]).min(-1) w = np.minimum(np.float32(dist)/d, 1.0) return img*w + img_blur*(1-w)
Example #6
Source File: augmenters.py From netharn with Apache License 2.0 | 5 votes |
def __init__(self, target_size, fill_color=127, mode='letterbox', border='constant', random_state=None): super(Resize, self).__init__(random_state=random_state) self.target_size = None if target_size is None else np.array(target_size) self.mode = mode import imgaug.parameters as iap if fill_color == imgaug.ALL: self.fill_color = iap.Uniform(0, 255) else: self.fill_color = iap.handle_continuous_param( fill_color, "fill_color", value_range=None, tuple_to_uniform=True, list_to_choice=True) self._cv2_border_type_map = { 'constant': cv2.BORDER_CONSTANT, 'edge': cv2.BORDER_REPLICATE, 'linear_ramp': None, 'maximum': None, 'mean': None, 'median': None, 'minimum': None, 'reflect': cv2.BORDER_REFLECT_101, 'symmetric': cv2.BORDER_REFLECT, 'wrap': cv2.BORDER_WRAP, cv2.BORDER_CONSTANT: cv2.BORDER_CONSTANT, cv2.BORDER_REPLICATE: cv2.BORDER_REPLICATE, cv2.BORDER_REFLECT_101: cv2.BORDER_REFLECT_101, cv2.BORDER_REFLECT: cv2.BORDER_REFLECT } if isinstance(border, six.string_types): if border == imgaug.ALL: border = [k for k, v in self._cv2_border_type_map.items() if v is not None and isinstance(k, six.string_types)] else: border = [border] if isinstance(border, (list, tuple)): from imgaug.parameters import Choice border = Choice(border) self.border = border assert self.mode == 'letterbox', 'thats all folks'