Python cv2.COLOR_HLS2BGR Examples
The following are 7
code examples of cv2.COLOR_HLS2BGR().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: transforms.py From dmc-net with MIT License | 6 votes |
def color_aug(img, random_h=36, random_l=50, random_s=50): img = cv2.cvtColor(img, cv2.COLOR_BGR2HLS).astype(float) h = (random.random() * 2 - 1.0) * random_h l = (random.random() * 2 - 1.0) * random_l s = (random.random() * 2 - 1.0) * random_s img[..., 0] += h img[..., 0] = np.minimum(img[..., 0], 180) img[..., 1] += l img[..., 1] = np.minimum(img[..., 1], 255) img[..., 2] += s img[..., 2] = np.minimum(img[..., 2], 255) img = np.maximum(img, 0) img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_HLS2BGR) return img
Example #2
Source File: transforms.py From dmc-net with MIT License | 6 votes |
def color_aug(img, random_h=36, random_l=50, random_s=50): img = cv2.cvtColor(img, cv2.COLOR_BGR2HLS).astype(float) h = (random.random() * 2 - 1.0) * random_h l = (random.random() * 2 - 1.0) * random_l s = (random.random() * 2 - 1.0) * random_s img[..., 0] += h img[..., 0] = np.minimum(img[..., 0], 180) img[..., 1] += l img[..., 1] = np.minimum(img[..., 1], 255) img[..., 2] += s img[..., 2] = np.minimum(img[..., 2], 255) img = np.maximum(img, 0) img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_HLS2BGR) return img
Example #3
Source File: transforms.py From pytorch-coviar with GNU Lesser General Public License v2.1 | 6 votes |
def color_aug(img, random_h=36, random_l=50, random_s=50): img = cv2.cvtColor(img, cv2.COLOR_BGR2HLS).astype(float) h = (random.random() * 2 - 1.0) * random_h l = (random.random() * 2 - 1.0) * random_l s = (random.random() * 2 - 1.0) * random_s img[..., 0] += h img[..., 0] = np.minimum(img[..., 0], 180) img[..., 1] += l img[..., 1] = np.minimum(img[..., 1], 255) img[..., 2] += s img[..., 2] = np.minimum(img[..., 2], 255) img = np.maximum(img, 0) img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_HLS2BGR) return img
Example #4
Source File: test_weather.py From imgaug with MIT License | 5 votes |
def test_from_colorspace(self): # test BGR colorspace aug = iaa.FastSnowyLandscape( lightness_threshold=100, lightness_multiplier=2.0, from_colorspace="BGR") image = np.arange(0, 6*6*3).reshape((6, 6, 3)).astype(np.uint8) image_hls = cv2.cvtColor(image, cv2.COLOR_BGR2HLS) mask = (image_hls[..., 1] < 100) expected = np.copy(image_hls).astype(np.float32) expected[..., 1][mask] *= 2.0 expected = np.clip(np.round(expected), 0, 255).astype(np.uint8) expected = cv2.cvtColor(expected, cv2.COLOR_HLS2BGR) observed = aug.augment_image(image) assert np.array_equal(observed, expected)
Example #5
Source File: main.py From BeautyCamera with MIT License | 5 votes |
def change_saturation(self): if self.raw_image is None: return 0 value = self.ui.horizontalSlider.value() img_hsv = cv2.cvtColor(self.current_img, cv2.COLOR_BGR2HLS) if value > 2: img_hsv[:, :, 2] = np.log(img_hsv[:, :, 2] /255* (value - 1)+1) / np.log(value + 1) * 255 if value < 0: img_hsv[:, :, 2] = np.uint8(img_hsv[:, :, 2] / np.log(- value + np.e)) self.current_img = cv2.cvtColor(img_hsv, cv2.COLOR_HLS2BGR) # 明度调节
Example #6
Source File: main.py From BeautyCamera with MIT License | 5 votes |
def change_darker(self): if self.raw_image is None: return 0 value = self.ui.horizontalSlider_4.value() img_hsv = cv2.cvtColor(self.current_img, cv2.COLOR_BGR2HLS) if value > 3: img_hsv[:, :, 1] = np.log(img_hsv[:, :, 1] /255* (value - 1)+1) / np.log(value + 1) * 255 if value < 0: img_hsv[:, :, 1] = np.uint8(img_hsv[:, :, 1] / np.log(- value + np.e)) self.last_image = self.current_img self.current_img = cv2.cvtColor(img_hsv, cv2.COLOR_HLS2BGR) # 人脸识别
Example #7
Source File: inference_utils.py From rpg_e2vid with GNU General Public License v3.0 | 5 votes |
def upsample_color_image(grayscale_highres, color_lowres_bgr, colorspace='LAB'): """ Generate a high res color image from a high res grayscale image, and a low res color image, using the trick described in: http://www.planetary.org/blogs/emily-lakdawalla/2013/04231204-image-processing-colorizing-images.html """ assert(len(grayscale_highres.shape) == 2) assert(len(color_lowres_bgr.shape) == 3 and color_lowres_bgr.shape[2] == 3) if colorspace == 'LAB': # convert color image to LAB space lab = cv2.cvtColor(src=color_lowres_bgr, code=cv2.COLOR_BGR2LAB) # replace lightness channel with the highres image lab[:, :, 0] = grayscale_highres # convert back to BGR color_highres_bgr = cv2.cvtColor(src=lab, code=cv2.COLOR_LAB2BGR) elif colorspace == 'HSV': # convert color image to HSV space hsv = cv2.cvtColor(src=color_lowres_bgr, code=cv2.COLOR_BGR2HSV) # replace value channel with the highres image hsv[:, :, 2] = grayscale_highres # convert back to BGR color_highres_bgr = cv2.cvtColor(src=hsv, code=cv2.COLOR_HSV2BGR) elif colorspace == 'HLS': # convert color image to HLS space hls = cv2.cvtColor(src=color_lowres_bgr, code=cv2.COLOR_BGR2HLS) # replace lightness channel with the highres image hls[:, :, 1] = grayscale_highres # convert back to BGR color_highres_bgr = cv2.cvtColor(src=hls, code=cv2.COLOR_HLS2BGR) return color_highres_bgr